Ultra High-Performance Concrete (UHPC) Applications in New Jersey – An Update

UHPC for Bridge Preservation and Repair is a model innovation that was featured in FHWA’s Every Day Counts Program (EDC-6).  UHPC is recognized as an innovative new material that can be used to extend the life of bridges. Its enhanced strength reduces the need for repairs, adding to the service life of a facility.   

This Q&A article has been prepared following an interview with Jess Mendenhall and Samer Rabie of NJDOT, who provided an update on the pilot projects of UHPC around the state. The interview has been edited for clarity. 

Q.  While EDC-6 was underway, we spoke with your unit about the pilot projects being undertaken with UHPC.  Some initial lessons were shared subsequently in a featured presentation given to the NJ STIC.  Can you update us on results of those projects, and did they yield any benefits in the fields of safety or environmental considerations?

For the NJDOT Pilot Project, the thickness of the overlay was limited by the required depth for effectiveness, as well as the cost of the UHPC material and environmental permitting. To mitigate environmental permitting, we avoided any modifications to the existing elevations and geometry of the structure. Essentially, any removal of asphalt and concrete needed to be replaced to its original elevations.

UHPC overlays can significantly extend the service of bridge decks and even increase a structure’s capacity. Although safety improvements were not the primary objective of this application, there were rideability and surface drainage considerations in the design to enhance the conditions for the road users.

The environmental impacts of structural designs must be compared on the cradle-to-grave use cycle of the design at a project scale.  Having a focus on sustainability is imperative; however, it is more meaningful when resiliency is also considered.  While the greenhouse gas emissions of a volume of UHPC are higher than those of the same volume of concrete, UHPC enables the reduction in the amount of material required in structural designs and improves the durability of structures. Its exceptional compressive strength and toughness allow for the reduction of material usage. By minimizing maintenance requirements and extending the lifespan of infrastructure, UHPC reduces the consumption of materials, energy, and resources over time.

For example, we installed this overlay on 4 bridges as a preservation technique. Had we done nothing, they would have lasted approximately 10 more years. During that time they would have needed routine deck patching resulting in further contamination of the decks and in a condition that is no longer preservable and requires total deck replacement, with large volumes of concrete and much more environmental impact.

UHPC allowed us to take these decks that are still in decent shape and preserve them now with a relatively thin layer to make them exceed the service life of the superstructure and substructure.

Q. Has UHPC been incorporated into the design manual?

Figure 1. UHPC being placed by workers

It is not in our current design manual, but we are working on the revised design manual. UHPC is presently being used for all closure pores between prefabricated components, overlays, and link-slabs. I don’t think we are ready to standardize it quite yet. We used it on the 4 bridges and it will continue to be used, but we will not standardize it until the industry is more predictable and we get more experience to develop thorough guidelines and specifications. It is incorporated into projects as a special provision with non-standard items.

Q. Have you been receiving more requests to use this technology from around the state?

It is much more commonly specified by designers or requested for use on many of our projects. We have responded to nationwide inquiries from state transportation agencies and universities seeking our specifications or input on specific testing and procedures.

Q. What efforts do you think can be taken to encourage more adoption amongst local agencies, counties, etc.?

We are keen on inviting the counties to any training or workshop that we are hosting as well as sharing our lessons learned thus far.  I think they are aware of it.

Q. What kind of hurdles do you think exist that may limit widespread adoption?

It is possible that initial cost and industry experience with the material are still major limiting factors in adoption. We have also learned from specialty UHPC contractors that the innovation and availability of construction equipment geared for UHPC implementation are also lacking.  Bringing into focus the life cycle costs and with more implementations, we think many of these hurdles will be overcome. Additionally, once UHPC is used more in routine maintenance the implementation would be more frequent and widespread; we know there is interest specifically in UHPC shotcrete once it is available.

Q. Are you familiar with any training, workshops, or conferences that have been done for staff or their partners on this topic?

We participated in the Accelerated Bridge Construction (ABC) conference in Miami, Florida, the International Bridge Conference (IBC) in Pittsburgh, Pennsylvania and the New York State DOT Peer Exchange. In Delaware, we presented at the Third International Interactive Symposium on UHPC. We also participated in the development of a UHPC course for the AASHTO Technical Training Solutions (TTS formerly TC3) which is now published on the AASHTO TTS portal and available on our LMS internally. 

Q. Do you think there is any special training needed for the construction workforce to start using this technology?

Absolutely, the AASHTO TTS course and the EDC-6 workshops are geared towards the design and construction, TTS is more focused in the Construction. It’s an introduction to what to expect and how to implement it. UHPC is often used for repair projects, and many contractors may not have the experience or comfort with using the material.

Figure 2. UHPC Testing at Rutgers’ CAIT

Q. What are the results of the pilot projects of UHPC?

This Pilot projects program demonstrated that UHPC overlays can be successfully placed on various structures, the work can be completed rapidly to minimize traffic impacts — we estimated roughly four weeks of traffic disruption per stage, and the benefits of UHPC can help preserve the existing infrastructure. Compared to deck replacement, UHPC overlays can rehabilitate a bridge deck at exceptional speeds with unique constructability and traffic patterns, as implemented in all four structures. However, limitations exist, and further research is necessary to investigate the issues identified in the pilot project, but the potential of this material outweighs the existing limitations.

Q. Has there been long-term testing data developed to gather performance data?

To assess the performance of the UHPC overlay, we put together a testing program to include NDT as well as physical sampling and lab testing. This objective will be accomplished by first establishing baseline conditions through an initial survey followed by periodic monitoring of the UHPC-overlaid bridges over succeeding years. This will help NJDOT assess the performance of UHPC as an overlay. Overall, the results show the overlay bond is performing well.

Q. Has the data from the pilot project been used to research further applications?

Further applications for UHPC overlay are on new bridge decks/superstructures, and the data from UHPC overlay research project are being used for these projects. There is an interest in header reconstruction with UHPC. If deck joints need to be replaced, they should be constructed with conventional HPC with UHPC at the surface to provide the same overlay protection over the entire structure. Also, self-consolidating and self-leveling UHPC was preferred for the full-depth UHPC header placement to ensure proper consolidation around tight corners and reinforcement. This will be further explored for maintenance operations as well.

For future projects, in lieu of full-depth header reconstruction in a single lift, a partial depth header removal and reconstruction or alternatively two lifts of header concrete should be evaluated to coincide with the deck overlay, in which case the benefits of the fast cure times from UHPC can still be realized. Two of the four bridges experienced air voids throughout the placement. A UHPC slurry with no

fibers was placed in the identified air voids; since the voids contained exposed fibers, they were considered to create adequate bonding with the UHPC slurry.

Resources

NJDOT Technology Transfer (2021, November). Stronger, More Resilient Bridges: Ultra High-Performance Concrete (UHPC) Applications in New Jersey.  Interview with Pranav Lathia, Retrieved from:  https://www.njdottechtransfer.net/2021/11/29/uhpc-stronger-more-resilient-bridges/

Mendenhall, Jess and Rabie, Samer. (2021, October 20). UHPC Overlays for Bridge Preservation—Lessons Learned. New Jersey Department of Transportation. https://www.njdottechtransfer.net/wp-content/uploads/2021/11/NJDOT-UHPC-Overlay-Research-Project-EDC-6-Workshop.pdf

New Jersey Department of Transportation. (2021, October 20). NJDOT Workshop Report. New Jersey Department of Transportation. https://www.njdottechtransfer.net/wp-content/uploads/2021/11/NJDOT-UHPC-Workshop-Final-Report.pdf

Rabie, Samer and Jess Mendenhall (2022, December). Design, Construction, and Evaluation of UHPC Bridge Deck Overlays for NJDOT.  NJ STIC Presentation and Recording.  Retrieved from:  https://www.njdottechtransfer.net/2022/12/18/nj-stic-4th-quarter-2022-meeting/

Safety Behavior and Gender Split Differences in Micromobility: A Q&A Interview with Researcher


Q. How was your research funded?    

This work was supported by the National Science Foundation under a grant called “Making Micromobility Smarter and Safer”. The lead on this is Dr. Clint Andrews at Rutgers University and there are several other principal investigators. My study acts as a part of this multi-year research.  

Q.  Can you share a brief overview of your findings? Are the results surprising or unique compared to past research?    

We are one of the only studies comparing the safety behavior of cyclists and e-scooter users across genders. Without considering gender, we found that one-third of cyclists wore a helmet. We also found in our observations that e-scooter users did not wear a helmet. It speaks to how important it is to have safe micromobility infrastructure, especially knowing that people are unlikely to wear a helmet. In the U.S., even if you give everyone a helmet, they’re probably not going to wear it. That’s just how it is. Keeping people safe in other ways is paramount.  

We also found that a greater proportion of women were using e-scooters than bicycles. This is important because cycling has long been a male-dominated mode of transportation, for a variety of reasons. That is true across the world. There are studies that suggest women are less likely to cycle to work because of clothing like wearing a skirt or dress or heels, or fears of sweating. E-scooters remove that hurdle since they are not as prohibitive in terms of clothing and require less physical exertion. So, the vehicle type itself may make a difference. Moreover, women place more importance on bike lane infrastructure than men.  If we are seeing that e-scooters are the preferred mode for females, perhaps e-scooters can help narrow the gender gap in micromobility. 

Q.  Can you talk a little bit about the methods used for this study? How are these methods different from past research? Why did you choose to use traffic cameras for your observations?

This work was done using manual observations, a common method in micromobility studies. Previous research had used observations collected in the field. Instead of having observers in the field, we observed traffic camera footage at one intersection. Because we were observing gender and race as well as group behavior, the footage was useful as it allowed us to pause when needed. It was also less resource intensive than having a person stand in the field since no travel expenses were associated with the analysis.  

Q.  What challenges have you found in working with and interpreting traffic camera footage? With the improvement of AI technologies, do you think there will be an opportunity to automate this process in the future?  Are there any limitations you expect from this type of innovation?  

It is very time consuming and tedious to analyze this much camera footage. We analyzed 35 hours of footage. I would love to have analyzed more, but you have to draw the line somewhere depending on the resources available for the research or project study. Most of the time, we fast forwarded until a micromobility user was detected, but it still requires undivided attention. There is a possibility with current technology to incorporate AI technologies: to use computer vision to detect humans, which then can be manually viewed by a human to assess micromobility mode, gender, and helmet use. This would likely reduce the manual labor… It would be interesting to compare the computer vision model to the work I have done… Nonetheless, computer vision does not differentiate properly between pedestrians and e-scooter users, so it is prone to misidentification, which would lengthen the time taken to observe manually.  

At this point, computer vision cannot detect gender, helmet use, and group riding properly from traffic camera footage. More high-resolution images would be needed to differentiate gender and helmet use (like unobstructed face images) and group riding requires context clues like making eye contact, waiting for one another, etc. AI has the potential, but it is not there yet.  As time consuming as it is, I am confident that we detected every person, which is why we chose to observe the footage ourselves.  

Q.  What are the limitations of this study? Do you have plans for future research to address these?  How would you like to expand your research on this topic?   

The main limitation is the geographical scope of this research; it’s a lot of work for one city. We only analyzed the behavior of micromobility in one location, Asbury Park. It isn’t clear how much the results will translate from one location to another. Mode of transportation and behavioral use depends on many different factors that vary from location to location. There is evidence that the gender gap is smaller for e-scooter users in Brisbane, Australia, but not to the extent observed in Asbury Park. Same goes with helmet use. A larger scale study would be useful. Other limitations include the types of micromobility modes: we only observed shared e-scooters and privately owned bicycles in Asbury Park. So, we’re comparing two different vehicles and two different share types to one another. When analyzing the data, we must consider both of these factors. For example, are behaviors attributed solely to the vehicle or to the share type? Probably both. When you’re looking at the gender gap, is it because it’s an e-scooter or is it because it’s shared that there is a narrower gender gap?  

 An analysis comparing shared and privately owned e-scooters with shared and privately owned bicycles would be great. Differentiating between e-bikes and bicycles would be great too, although the resolution of traffic camera footage makes it very hard to differentiate between the two. Even with an observer onsite, it would be hard to detect, so you would need a survey, but this could alter behavior. In Asbury Park, a lot of people have privately owned e-scooters now, so we could do another study in 1.5-2 years and get additional insights in the same location.  

E-bikes are a growing mode of transportation, but even with traffic camera footage, it is very hard to tell an e-bike apart from a bicycle, so maybe in that case you would need somebody on site actually observing. You’re losing the ability to pause footage, but it might be more useful if you’re looking at e-bikes. Race and age were also very difficult to observe from the footage. It could be easier if someone was in person to observe in addition to the traffic camera footage. Even then, without asking directly the age and race/ethnicity of the user, there will be bias. There are a lot of different things to consider; it really depends on what the question is.  

Q.  How would you like this research to inform transportation agencies and practitioners in New Jersey and elsewhere?    

There are several key points. Users of shared e-scooters and privately owned bicycles are different and behave differently. E-scooter users are more likely to take risks like not wearing a helmet or riding on the road. Planners must ensure that the infrastructure keeps them safe. That is, implementing dedicated protected bike lanes that are connected to a greater network and adding traffic calming measures to slow the speeds of motor-vehicles like raised crosswalks or narrower traffic lanes.

Understanding the reasons behind lane use is important as well, as there are concerns for pedestrian safety. Our research observed that lane use was different; for example, 7 percent of male cyclists rode on the sidewalk, compared to 28 percent of female e-scooter users.

Additionally, having a shared e-scooter system in a city can increase female participation in micromobility use. It is a more gender equitable mode than bicycles. Other agencies might want to implement an e-scooter share program in their town.  

Q.  Your research shows that women were more likely than men to ride on the sidewalk while using an e-scooter or bike. Given that this strategy is illegal in most parts of the country, how can planners, engineers and policymakers use this information to increase feelings of safety for female micromobility users?     

This is really interesting. From my research, there is not a lot that I could say. Implicitly, one of the reasons for someone to ride on the sidewalk instead of the road is that they feel safer on the sidewalk. There is a need to ensure that micromobility users feel just as safe on the road–that is, implement a dedicated and protected bike lane, and provide a clear separation from motor-vehicles.

From our work, we know that there are other more complex factors at play: our research had clear results for road lane use with the implementation of the bike lane, but less clear ones for sidewalk use: sidewalk use was not significantly reduced by the presence of a pop-up bike lane. To encourage safe road use, ensuring a complete network would be a start. The pop-up bike lane was not connected to another bike lane going downtown, for instance. If you’re already coming downtown on the sidewalk, you might be more likely to stay there given the existing curb that would need to be crossed to go from the sidewalk to the pop-up bike lane.  

Q.  NJDOT is sponsoring a program to ensure the implementation of the Statewide Bicycle and Pedestrian Master Plan. In what ways could this master plan or a future one align with the findings in your study?  

The results of this study reinforce that implementing a bike lane provides a layer of safety for micromobility users. Nearly all the increase in bike lane usage came from a reduction in traffic lane usage, not in sidewalk usage. There is so much research out there that shows that bike lanes save lives; in the case of a crash, someone in a bike lane is less likely to be injured. Ensuring that plans accommodate both bicycles and e-vehicles–like e-bikes and e-scooters–is also paramount.  

Q.  The Biden Administration has set a goal to achieve a net zero emissions economy by 2050. How might a shift toward micromobility help the nation reach its climate and carbon emission goals?    

Bicycles are zero emission vehicles. E-bikes and e-scooters produce few emissions, especially privately owned ones since they don’t require rebalancing. Rebalancing shared vehicles requires a car or van and those gasoline emissions are absorbed by those shared e-scooters. Having an e-vehicle do that for rebalancing helps to reduce those emissions. Bicycle-friendly infrastructure, which reduces motor-vehicle infrastructure such as the number of traffic lanes, or parking, can also reduce motor-vehicle use and induce more environmentally friendly travel.   

Q.  How could a focus on reaching these climate goals impact the way that planners and engineers design streets?    


Resources

Blickstein, S.G., Brown, C.T., & Yang, S. (2019). “E-Scooter Programs Current State of Practice in US Cities.” Retrieved from https://njbikeped.org/e-scooter-programs-current-state-of-practice-in-us-cities-2019/

Marshall, H. (2023). “How do Female Cyclists Perceive Different Cycling Environments? – A Photo-elicitation study in Stockholm, Sweden.” Retrieved from https://gupea.ub.gu.se/handle/2077/78209

NJDOT Technology Transfer. (2020). “Tech Talk! Launching Micromobility in NJ and Beyond.” Retrieved from https://www.njdottechtransfer.net/2020/02/25/launching-micromobility-in-nj-and-beyond/

NJDOT Technology Transfer. (2021). “How Automated Video Analytics Can Make NJ’s Transportation Network Safer and More Efficient.” Retrieved from https://www.njdottechtransfer.net/2021/11/08/automated-video-analytics/

NJDOT Technology Transfer.(2022). “Research Spotlight: Exploring the Use of Artificial Intelligence to Improve Railroad Safety”. Retrieved from https://www.njdottechtransfer.net/2022/08/19/researchspotlightairailroadsafety

Rupi, F., Freo, M., Poliziani, C., & Schweizer, J. (2023). “Analysis of Gender-Specific Bicycle Route Choices Using Revealed Preference Surveys Based on GPS Traces.” Retrieved from https://www.sciencedirect.com/science/article/pii/S0967070X2300001X

Salazar-Miranda, A., Zhang, F., Maoran, S., & Ratti, C. (2023). “Smart Curbs: Measuring Street Activities in Real-Time Using Computer Vision,” Retrieved from https://www.sciencedirect.com/science/article/pii/S0169204623000348?casa_token=XPecGlOM6UQAAAAA:vnISsmV2aoJ3iVJefEeqjM24R5izcs66bvukCQObjuSWGTNokotT4CG_1h8UfLih16wn3FMg_Jo [DA1] [KR2] 

Von Hagen, L.A., Meehan, S., Younes, H., et. al. (2022), “Asbury Park Bike Lane Demonstration,” Retrieved from https://storymaps.arcgis.com/stories/c014811ac0c14735bc9c9adc2639e88f.

Younes, H., Noland, R., & Andrews, C. (2023). “Gender Split and Safety Behavior of Cyclists and E-Scooter Users in Asbury Park, NJ,” Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S2213624X2300127X#b0055.

Younes, H., Noland, R., & and Von Hagen, L.A. (2023). “Are E-Scooter Users More Seriously Injured than E-Bike Users and Bicyclists?” Retrieved from https://policylab.rutgers.edu/are-e-scooter-users-more-seriously-injured-than-e-bike-users-and-bicyclists/.


Q&A: What’s EPIC2 about Internally Cured Concrete?

Enhancing Performance with Internally Cured Concrete (EPIC2) is a model innovation in the latest round of the FHWA’s Every Day Counts Program (EDC-7). EPIC2 is recognized as an innovative new technique that can be used to extend the life of concrete bridges and roads. Internal curing increases concrete’s resistance to early cracking, allowing the production of higher-performance concretes that may last more than 75 years.

This Q&A article has been prepared following an interview and follow-up correspondence with Samer Rabie and Jess Mendenhall of the New Jersey Department of Transportation. The Q&A interview has been condensed and edited for clarity.


Q. What is Internally Cured Concrete, and how does it differ from traditional concrete?

A common issue with high performance concrete (HPC) bridge decks is that soon after the curing is done, they develop fine shrinkage cracks spread throughout the deck. Even this fine cracking can reduce the service life. In the past, we have used crack sealing materials as a mitigation effort, but when we learned about internally cured concrete, we shifted our focus to see if we could adopt it in New Jersey.

Figure 1. Illustrating the difference between conventional and internal curing

Autogenous or chemical shrinkage is specific to HPC concrete, where the w/c ratio is less than 0.42. It is due to self-desiccation, which is water consumed by the cementitious materials after setting, and that is one where internal curing can help.

There are multiple methods to implement internal curing. The method that we are considering involves  modifying a conventional concrete mixture to an internally cured concrete mixture by replacing a portion of the fine aggregate (sand) with lightweight fine aggregate. This lightweight fine aggregate (LWFA) is saturated with internal curing water, typically estimated at 7lbs of water for every 100lbs of cementitious materials used in the mixture. Next, the amount of LWA required for this amount of internal curing water is determined based on the mass of the internal curing water and the absorption of the LWFA. Once the total volume and mass of lightweight aggregate are determined, the volume (and mass) of the fine lightweight aggregate are adjusted so that the volume of LWFA and fine aggregate in the internally cured mixture is equal to the volume of the fine aggregate in the original mixture.

The LWFA will provide internal curing water within the concrete mix during curing, and prevent a condition that occurs in low W/CM ratio systems where the capillary water within the concrete matrix pores will be consumed without complete cement hydration, which can lead to cracking of the concrete matrix.

Q. How does Internally Cured Concrete improve performance?

Internal curing improves the performance of concrete by increasing the reaction of the cementitious materials and reducing internal stresses that typically develop in high-cementitious content mixtures if insufficient internal curing water is present. However, in addition to conventional curing which supplies water from the surface of concrete, internal curing provides curing water from the aggregates within the concrete. This provides a source of moisture from inside the concrete mixture, improving its resistance to cracking and overall durability.

Q. Are there any limitations on the use of internally cured concrete?

Internal curing is extremely versatile and  can generally be used anywhere traditional concrete is used. Most of the process is the same, and aggregates can be pre-saturated as needed. It follows the norms of industrial concrete production, making it accessible to any producer already familiar with the state of practice. Most of the implementation process is similar to conventional concrete.

Figure 2. Workers applying internally cured concrete to a bridge deck.

Q. What New Jersey sites were picked for use in internally cured concrete, and why?

We started with a list of all of our bridge projects, specifically projects that needed deck replacement and superstructure replacement. We then further targeted projects that allowed us to focus on implementation and quick delivery time rather than constructability and other additional challenges. We looked at projects with straightforward staging and geometry and prioritized projects with twin bridges (for example, northbound and southbound). This would allow us to do one bridge with traditional HPC and the other with internally cured HPC, providing us with an excellent controlled opportunity to study and compare the results.

Various sites have been screened throughout the state. Currently, eight bridges are under consideration, with a project scope of work of deck and superstructure replacement. The rationale included the project scope of work, CIP deck slabs, project schedule, staging constraints, and avoiding heavily skewed bridges.

Q. Have any life cycle cost analyses been performed?

We have not prepared one ourselves, but we do plan on doing so in the future. First, we will need to get these projects out to construction and get actual cost data. We’re expecting higher upfront costs, but if cracking is reduced then the life cycle costs and future maintenance and reconstruction needs can be significantly reduced.

Q. In what ways do you think people can be better educated on the implementation of EPIC2?

We have presented to many of our stakeholders in our capital program to discuss the topic, and now that it is an EDC initiative,  decision makers are acknowledging its value. The Federal Highway Administration is also planning on conducting workshops and peer exchanges between contractors, concrete suppliers, and other agencies like New York State DOT, which have already done this. All of these are extremely valuable.

We first heard about internally cured concrete during a peer exchange in 2021 with the New York State DOT. It was under the banner of EDC-6, and they took us out on several bridges where we noted that they have significantly reduced the typical shrinkage cracking that is common with High Performance Concrete. So that was an eye opening experience for us, and I know it would be valuable to others. The fact that it is now its own initiative in EDC-7 helps facilitate implementation.

Q. Is special training needed for contractors to work with internally cured concrete?

From our research and experience with other agencies, the finishing should not be significantly different from conventional HPC. The process at that point will be almost identical to placing traditional concrete, so there won’t be any learning curve or time spent on getting workers to learn how to deal with a new material. In fact, most contractors say that the mixture is easier to work due to improved pumpability as the material is quite smooth. I think the crucial step will be to coordinate with concrete production plants that are creating the mixes.

Figure 3. States that have implemented EPIC2 on their roads or bridges

Q. Where else has internally cured concrete been implemented?

So far it has been used in bridge decks in many states, including New York, Ohio, and North Carolina, among others. It has also been used in pavement and pavements in Kansas, Texas and Michigan.

Q. What is the future of internally cured concrete in New Jersey?

We hope these projects will be successful, and that our current crop of projects will result in some valuable lessons learned. In the long term, I believe the goal would be that all of the bridge decks would use an internally cured mixture. I can also see this being used for patching and deck repair jobs. But ultimately, the goal would be for this to become the new standard for bridge decks across the state.


Resources

Federal Highway Administration. 2023 Internally Curing Concrete Produces EPIC2 Results. https://www.fhwa.dot.gov/innovation/innovator/issue98/page_01.html

Federal Highway Administration. 2023. Enhancing Performance with Internally Cured Concrete. https://www.fhwa.dot.gov/innovation/everydaycounts/edc_7/docs/EDC-7FactsheetEPIC2.pdf

Federal Highway Administration. (2018, June). Concrete Clips: Internal Curing. https://www.youtube.com/watch?v=b6WREFmacaM

New York State DOT Standard Specifications (2021). Standard Specifications. New York State DOT. https://www.dot.ny.gov/main/business-center/engineering/specifications/busi-e-standards-usc/usc-repository/2021_9_specs_usc_vol2.pdf

National Concrete Pavement Technology Center Internal Curing Resources. (2022). Internal Curing. Iowa State University. https://cptechcenter.org/internal-curing/

Internal Curing. (2020). Oregon State University. https://engineering.oregonstate.edu/CCE/research/asphalt-materials-performance-lab/materials-research-concrete-materials/Internal-Curing

Pacheco, Jose. (2021, October). USDOT Workshop Report, Bureau of Transportation Statistics. Wisconsin Department of Transportation. https://rosap.ntl.bts.gov/view/dot/62607

Weiss, Joseph. (2015, July). Internal Curing Technical Brief. Federal Highway Administration. https://www.fhwa.dot.gov/pavement/concrete/pubs/hif16006.pdf

Did You Know? Research on ALICE and Mobility of Low-Income Households

At the 2023 NJDOT Research Showcase, New Jersey Transportation Commissioner Diane Gutierrez-Scaccetti “appealed to attendees to advance community-centered transportation and to commit to considering the needs of ALICE (Asset Limited, Income Constrained, Employed) persons when devising research questions and in carrying out their day-to-day activities with the goal of planning, building and maintaining a more safe, equitable and sustainable transportation system.” Gutierrez-Scaccetti has repeatedly said that she “drives with ALICE” in mind, but that ALICE would rather drive by herself. On Jan. 30, 2023, Gutierrez-Scaccetti spoke at the National ALICE Summit on Navigating the ALICE Highway: A Multistate Transportation System by 2030.

In recognition of the Commissioner’s emphasis on getting to better know who ALICE is, the NJDOT Research Library has done a quick research of resources related to the mobility of low-income households and the ALICE project at The United Way. These are included below:

United Way of Northern New Jersey operates the website United for ALICE, which maintains research pages for “partner states” (28 states, including New Jersey, plus the District of Columbia). United Way of Northern New Jersey (then known as United Way of Morris County) released its first ALICE report in 2009.

United Way prepares state fact sheets that compare the ALICE Essentials Index (AEI) to the Consumer Price Index (CPI) over time.

The October 2023 NCHRP Research Results Digest, Collective and Individual Actions to Envision and Realize the Next Era of America’s Transportation Infrastructure: Phase 1, includes this background on ALICE households: “Economic growth and prosperity have not been spread evenly across the United States. About 13 percent of households earn incomes below the poverty line and an additional 29 percent are considered to be asset-limited, income-constrained, and employed (ALICE)…. The average household spends 16 percent of total expenditures on transportation—the second biggest cost after housing…. Significant numbers of Americans have limited access to health care, education, fresh food, or high-speed Internet.”

In 2018, New Jersey Governor Phil Murphy cited “more than one million [ALICE] families” in New Jersey as the impetus to raise the state’s minimum wage to $15 per hour. In 2024, New Jersey’s minimum wage will surpass $15 for the first time.

November 2023 article from the journal Social Science & Medicine laments the fact that public health studies have not used ALICE data.

The Mackinac Center for Public Policy takes an opposite tack in its criticism. It issued a 2021 report, An Assessment of ALICE: A Misleading Measure of Poverty. “Unfortunately, United Way’s research on this issue is methodologically flawed, misleading and does not help inform the public or policymakers about how to help these households,” the authors write. The Mackinac Center for Public Policy describes itself as “a nonprofit research and educational institute that advances the principles of free markets and limited government.”

United for ALICE states that it provides “unbiased data that is replicable, easily updated on a regular basis, and sensitive to local context,” and that its published measures provide a better picture of “the number of households that are struggling in each county in a state,” compared with the Federal Poverty Level. United for ALICE’s most recent research methodology report was published in April 2023.

Transportation research on low-income individuals can be found via the TRID and ROSA-P databases.

The following are some relevant articles on the topic, curated by the NJDOT Research Library:

Current research projects into the topic of serving low-income populations include these:


Please contact the NJDOT research librarian, Eric Schwarz, MSLIS, at (609) 963-1898, or email at library@dot.nj.gov for assistance on how to expand your search to projects, or retrieve these or other publications.

NJDOT’s Research Showcase Recognized as Best Virtual Event by AASHTO Communications Committee

The AASHTO 2023 Best Virtual Event Award recognizes a special event that is held virtually or that includes a virtual component.

AASHTO’s Committee on Transportation Communications – known as TransComm – sponsors an annual skills awards competition to promote the sharing of best practices and to recognize outstanding communications efforts. In October 2023, NJDOT Bureau of Research representatives Amanda Gendek and Pragna Shah accepted the 2023 AASHTO TransComm Skills Award in the Virtual Events Category for NJDOT’s 24th Annual Research Showcase. 

The NJDOT’s Bureau of Research Annual Research Showcase has been held since 1999 and provides an opportunity for the state’s transportation community to experience the broad scope of research initiatives and technology transfer activities conducted by their university and consultant partners. In addition to convening transportation professionals and researchers, the Showcase helps to emphasize NJDOT goals and objectives, share knowledge, and recognize the outstanding and inspiring research being done in the state.

The threat of COVID-19 transmission during the pandemic led to the Research Showcase being held fully online in 2020 and 2021. These fully virtual events resulted in a much larger audience, and even attracted attendees from other state Departments of Transportation. In 2022, as in-person events returned, the NJDOT Bureau of Research sought to find an approach that would maintain that larger audience base.

Amanda Gendek (left) and Pragna Shah (right) of the Bureau of Research with the award.

The 24th Annual Research Showcase, held October 26, 2022, was the first “hybrid” Research Showcase held by NJDOT and allowed individuals to attend the event online, while also allowing those able to gather, network and celebrate in person. Convening in a hybrid format required some additional coordination with the event planning team from Rutgers and Civic Eye Collaborative, a media consultant firm to live-stream the day’s proceedings. In total, 117 virtual participants and 190 in-person participants attended the day-long event.

Whether attending “in-person” or “virtually,” the audience heard from the keynote speaker and panelists on the major theme of the event “Advancing Equity in Transportation.” 

The Showcase theme, “Advancing Equity in Transportation” served as the organizing framework for the keynote speaker and panelists during the morning plenary session. The keynote speaker, Keith Benjamin, Associate Administrator for Highway Policy and External Affairs at the FHWA, spoke about the USDOT’s efforts to advance equity, highlighting the Infrastructure Investment and Jobs Act and the Inflation Reduction Act and various funding and program initiatives to address equity in transportation planning, project development, and other activities, among other topics. A panel session then explored the perspectives of representatives from NJDOT, county government, and transportation management associations (TMAs) who shared examples of the equity initiatives underway in their organizations. Questions and discussion invited panels to further reflect on the challenges and opportunities for advancing equity in transportation in New Jersey.  

The Showcase included afternoon breakout sessions featuring research presentations that continued to address the equity theme as well as other mobility, infrastructure, safety topics in transportation being performed by research faculty, staff, and students and NJ agencies. Several awards were also presented in recognition of research accomplishments and implemented innovations. For a full description of the 24th Annual Research Showcase event, see this recap here.

The 24th Annual Research showcase was recognized with the AASHTO Award for its efforts to enhance accessibility through the virtual platform. In addition to live-streaming the plenary and breakout sessions, the video recordings of the event were posted on NJDOT’s Tech Transfer Video Library and all those who registered were notified of its availability — whether attending in-person or online. Subsequent direct email communications and social media posts have further broadened the audience of potential viewers. To watch recordings from this, and other Research Showcase events, visit the NJDOT Tech Transfer Video Library.

The theme of the 24th Annual Research Showcase was selected in recognition of the significant Federal and state efforts underway to advance equity; Executive Order 13985 established a “whole government approach” to advancing equity and opportunity at the Federal level (left). Dr. Shawn Wilson, then-Secretary of Transportation in Louisiana, headlined a roundtable discussion, “State DOTs: Creating Pathways to Equity” at the Transportation Research Board’s 2022 Annual Meeting (right).

Research to Implementation: The Use of Porous Concrete in Sidewalks

This Research to Implementation video presents an example of NJDOT-sponsored research and the effect such research has in addressing transportation-related issues within the State.

Pervious (or porous) concrete has been gaining popularity as a potential solution to reduce the amount of impermeable surfaces associated with sidewalks, reduce puddling, and potentially slow storm water surface runoff. As important as these benefits are to surface runoff mitigation, concerns exist as to the ability of pervious concrete to provide sufficient structural support and longevity for the expected service life of the sidewalks as well as its life cycle costs. The composition of pervious concrete can limit its mechanical strength and present challenges in its maintenance to achieve the expected service life.

With support from NJDOT’s Bureau of Research, researchers have looked at the benefits and challenges to utilizing porous concrete for sidewalks, and conducted a follow-up demonstration project. For more information about this research and the demonstration project, see: The Use of Porous Concrete for Sidewalks and Implementation of Porous Concrete for Sidewalks in New Jersey.

The Research to Implementation video series promotes the benefits of funded research to increase the safety of the traveling public, reduce costs, and increase efficiency.

Accelerated Innovation Deployment (AID) Demonstration Funding Opportunity Available

The FHWA has published to Grants.gov a multiyear Notice of Funding Opportunity (NOFO) for the AID Demonstration for Fiscal Years (FY) 2023 – 2026 grants. The grants will result in the distribution of up to $10 million in FY 2023 and up to $12.5 million in each year FY 2024 to FY 2026. Funds made available for the AID Demonstration are awarded on a competitive basis to fund activities eligible for assistance under Title 23, United States Code in any phase of a highway transportation between project planning and project delivery including planning, financing, operation, structures, materials, pavements, environment, and construction.

The AID Demonstration NOFO is available on Grants.gov and the Call for Applications for the 2023 cycle is open! Look for AID Demonstration NOFO 693JJ324NF-AIDDP.

More information on the Accelerated Innovation Deployment program, including key submission dates in the 2023 application cycle and a link to register for an upcoming virtual information session, can be accessed through this link: https://www.fhwa.dot.gov/innovation/grants/

Recap: 25th Annual NJDOT Research Showcase

The 25th Annual NJDOT Research Showcase provided an opportunity for the New Jersey transportation community to learn about the broad scope of academic research initiatives underway and share technology transfer activities being conducted by institutions of higher education partners and their associates. The annual event serves as a showcase to highlight the benefits of transportation research, including NJDOT’s own program. This event was an in-person event with a livestreaming option with sessions held from 9:00am-2:45pm on October 25, 2023.

This year’s Showcase theme, “Commitment to Safety,” served as the organizing framework for the speakers and panelists during the morning plenary session. Throughout the day the Research Showcase featured presentations on infrastructure, safety, mobility, and equity topics being performed by research faculty, staff, students, and NJ agencies. Several awards were presented in recognition of research and implemented innovations.

The Research Showcase Program Agenda provides more information on the day’s proceedings, including presented topics and invited speakers. Recordings of the plenary and breakout sessions, and the presentations and posters shared during the event can be found below.

MORNING

WELCOMING AND INTRODUCTORY REMARKS

David Maruca, Program Development Administrator, Rutgers Center for Advanced Infrastructure and Transportation, served as the moderator for the morning session, offering some housekeeping remarks and walked through the morning’s agenda.

Morning Plenary and Keynote

Andrew Swords, Director, New Jersey Department of Transportation Division of Statewide Planning, welcomed attendees to the 25th Annual NJDOT Research Showcase, explaining the purpose and theme of the event, “Commitment to Safety,” and acknowledging several parties, including NJDOT Bureau of Research staff, Rutgers-CAIT, and the leadership of NJDOT and FHWA for their planning and participation in the day’s event along with the research partners whose work was being showcased.

Diane Gutierrez-Scaccetti, Commissioner, New Jersey Department of Transportation, thanked several partners for their involvement in the event and reflected on the history of the Research Showcase Event on the occasion of the 25th Anniversary. In framing the day’s activities, Commissioner Gutierrez-Scaccetti recognized the event’s “Commitment to Safety” theme and the foundational importance of transportation for affecting positive change, improving the quality of life, and the shape of New Jersey’s transportation system. In her remarks, she appealed to attendees to advance community-centered transportation and to commit to considering the needs of ALICE (Asset Limited, Income Constrained, Employed) persons when devising research questions and in carrying out their day-to-day activities with the goal of planning, building and maintaining a more safe, equitable and sustainable transportation system.

Diane Gutierrez-Scaccetti, Commissioner, New Jersey Department of Transportation. Photo by Steve Goodman.

Robert Clark, Division Administrator, Federal Highway Administration New Jersey Division acknowledged the importance of the NJDOT Research Showcase’s “Commitment to Safety” theme. He described several policy and research commitments at U.S. DOT, FHWA Turner-Fairbanks Research Center and the Volpe Center that are intended to “double-down” on improving safety, reducing fatalities and strengthening the culture of safety in transportation. In closing out, Mr. Clark shared the USDOT Commissioner’s message that roadway deaths is a crisis that is urgent, unacceptable and preventable; those in attendance should see that their work and research into safety can prove that roadway fatalities need not be inevitable.

KEYNOTE ADDRESS

Dr. Allison E. Curry, PhD, MPH, Associate Professor of Pediatrics, Children’s Hospital of Philadelphia delivered the keynote address on the New Jersey Safety and Health Outcomes (NJ-SHO) Data Warehouse. In organizing her talk, she explained the vision behind the development of the data warehouse over the last 15 years, the data sources that have been employed, its innovative features that can support meaningful research, and her vision for future research and collaborations drawing upon the data warehouse platform.

Dr. Curry described how crash data can be linked to other data sets to extend the period of study about crashes. She explained the data warehouse has been built through an array of administrative data partnerships with NJ agencies (e.g, public health, hospital, motor vehicle, police, medicare and medicaid, etc.) that have been linked alongside rich community-level indicators available at the census tract level to create a robust data tool for traffic safety research.

Dr. Allison E. Curry, PhD, MPH, Associate Professor of Pediatrics, Children’s Hospital of Philadelphia. Photo by Steve Goodman.
New Jersey Safety and Health Outcomes (NJ-SHO) Data Warehouse. Dr. Allison E. Curry, PhD, MPH, Associate Professor of Pediatrics, Children’s Hospital of Philadelphia

Her talk highlighted some of the limitations of crash reports that explain the need for data integration with other administrative record sources. She emphasized the longitudinal features of the data warehouse and explained how its linkages to health and motor vehicle records makes it possible to study specific populations segments — for example, teens on the autism spectrum. In her example, she described her research demonstrating how the data sets could be used to investigate the percentage of teens with autism who acquired driver licenses to increase their travel independence. She also could compare whether crash rates were comparable between this group and other teens in their age cohort at 12 months and 48 months from receipt of a license.

Dr. Curry also highlighted data limitations on reporting of race and ethnicity on NJ crash and licensing data and how other data sources (e.g., hospital discharge, electronic health records, birth and death data, etc. ) can be used to look at race and ethnic differences in non-fatal crash outcomes.  In doing so, she highlighted how a probability-based algorithm, Bayesian Surname Geocoding (Sartin 2021), developed by the RAND Corporation, has been applied to estimate the race and ethnicity of driver licenses and address a source of race and ethnic bias in hospital record reporting due to varying levels of hospital usage.

Dr. Curry touched upon several of NJ SHO’s innovative features that can enable research.  Among other points, she contrasted the “urban planning lens” which considers the place in which an accident occurred with the “public health lens” which seeks information about persons who are crash victims and where they live.

She also offered illustrative examples of how the NJ-SHO can be linked to vehicles to examine types of crashes, vehicle types and the injuries incurred which can reveal differences among more vulnerable populations (e.g, youth, elderly, poor) from other populations.

Dr. Curry closed her talk with a sneak preview of a new interactive data dashboard, NJ-SHO Center for Integrated Data, currently in development in association with the NJ Division of Traffic and Highway Safety. She noted how the dashboard tool will help practitioners efficiently use available data sets in ways that will mirror the metrics of the NJ Strategic Highway Safety Plan with a focus on persons as well as community resilience and social vulnerability equity-oriented measures.

Dr. Curry responded to questions in a Q&A session that followed her keynote remarks.

MORNING SESSION PANEL DISCUSSION

An interactive panel discussion, “How is New Jersey Department of Transportation Addressing Safety?” followed the keynote session with state NJDOT staff representatives who presented examples of the safety initiatives underway at NJDOT and reflected on persistent challenges and opportunities for addressing transportation safety in New Jersey.

The panelists included:

  • Andrew Swords, Director, New Jersey Department of Transportation Division of Statewide Planning.
  • Syed Kazmi, Section Chief, New Jersey Department of Transportation Division of Traffic Engineering
  • Kurt McCoy, Supervising Engineer, New Jersey Department of Transportation Division of Operations Support
  • Sangaran Vijayakumar, Project Management Specialist 3, New Jersey Department of Transportation Division of Project Management
  • Hirenkumar Patel, Principal Engineer, New Jersey Department of Transportation Division of Transportation Mobility
Safety Panel
How is New Jersey Department of Transportation Addressing Safety?

Participants responded to a series of questions posed by the moderator and by the audience members.

Panelists shared their views on how the New Jersey Department of Transportation addresses safety. Photo by Steve Goodman.

AWARDS

The program continued as Dr. Giri Venkiteela Research Scientist, Bureau of Research, New Jersey Department of Transportation announced several awards given in recognition of research, innovation and implementation efforts. Below is a listing of the award winners presented at this year’s showcase:

  • 2023 Outstanding University Student in Transportation Research Award – Alissa Persad, Rutgers University, Ms. Persad was being recognized in part for her valued contributions to the Innovative Materials for Quick Patching and Repair of Concrete project.
  • 2023 NJDOT Research Implementation Award – Dr. Hao Wang, Rutgers University Energy Harvesting on New Jersey Roadways. This project identified potential energy harvesting technology for applications on roadways and bridges and conducted feasibility analysis and performance evaluation of the selected technologies for large-scale and micro-scale energy generation.
  • 2023 Best Poster Award – Alyssa Yvette Sunga, Rowan University, Properties of Cementitious Materials with Reclaimed Cement. This poster described research activities that obtained recycled concrete; determined the chemical composition of reclaimed cement; partially replaced ordinary Portland cement with reclaimed cement in cement paste and mortar; and determined the fresh and hardened properties of cement paste and mortar through tests measuring flowability, initial setting time, heat of hydration, and compressive strength.
  • 2023 Research Champion Excellence Award – Thomas Bushar, New Jersey Department of Transportation, Materials. This award recognizes Mr. Busher’s dedication while serving as a Technical Advisory Panel member for The Evaluation of Different Paint Systems for Over-Coating Existing Structural Steel project. The award notes that his commitment greatly contributed to the success and implementation of this research project.
  • 2023 NJDOT Build a Better Mousetrap Award – Gerald Oliveto, P.E. New Jersey Department of Transportation, Moveable Bridge Unit. The “Route 71 Over Shark River Road Diet” is a road diet project that preserves an old historic drawbridge while improving safety and saving money.  When the Route 71 Drawbridge over Shark River between Belmar and Avon-by-the-Sea in Monmouth County suffered a mechanical failure in September 2021, engineers worked quickly to design and implement a solution that would both preserve the drawbridge and keep it in safe operation. The traffic load needed to be redistributed and balanced properly across the span to keep the bridge opened. NJDOT implemented a road diet across the bridge, which allowed the Department to address several safety issues. Traffic over the bridge was reduced from one northbound lane and two southbound lanes to one lane in each direction. Signal timings were adjusted, safety improvements at surrounding intersections were installed, and highway signage was enhanced. In addition, bike lanes that had previously ended abruptly were carried across the drawbridge utilizing an innovative bicycle-safe grid, a first-of-its-kind achievement in New Jersey. Through this $150,000 project completed in May 2022, the Route 71 over Shark River Road Diet project improved traffic flow, increased safety, and reduced congestion in a busy tourist area.
Awards Ceremony

Presentation of 2023 Awards

PRESENTATION OF AWARDS

2023 Outstanding University Student in Transportation Research Award, Alissa Persad, Rutgers University, Innovative Materials for Quick Patching and Repair of Concrete. Photo by Steve Goodman.
2023 NJDOT Research Implementation Award, Dr. Hao Wang, Rutgers University Energy Harvesting on New Jersey Roadways. Photo by Steve Goodman.
2023 Best Poster Award, Alyssa Yvette Sunga, Rowan University, Properties of Cementitious Materials with Reclaimed Cement. Photo by
Steve Goodman.
2023 Research Champion Excellence Award, Thomas Bushar, New Jersey Department of Transportation, Materials. Rajesh Kabaria accepted award on his behalf. Photo by Steve Goodman.
2023 NJDOT Build a Better Mousetrap Award, Gerald Oliveto, P.E. New Jersey Department of Transportation, Moveable Bridge Unit. The “Route 71 Over Shark River Road Diet.” Photo by Steve Goodman.

AFTERNOON 

In the afternoon, concurrent break-out sessions were held and research presentations were given on the topics of Equity & Mobility, Infrastructure, and Safety in transportation. Students and researchers at New Jersey’s colleges and universities also presented their research objectives, methods and findings in a concurrent poster session offering those in attendance an opportunity to learn more about ongoing and recently completed research and interact with the researchers.

INFRASTRUCTURE BREAKOUT

Infrastructure Sessions
Development and Analysis of Low Embodied Carbon Concrete Mixtures for Use in Transportation Applications. Matthew P. Adams, New Jersey Institute of Technology
Asphalt Pavement Pothole Repair with Recycled Material and Preheating. Xiao Chen and Hao Wang, Rutgers University
Rapid Assessment of Infrastructure Using NDT Methods. Manuel Celaya, Advanced Infrastructure Design, Inc.

EQUITY & MOBILITY BREAKOUT

Equity & Mobility Sessions
Comparative Analysis of Arterial Characteristics to Evaluate Road Diet Lane Reduction Potential. Thomas Brennan, The College of New Jersey
A Vehicle Trajectory Stitching and Reconstruction Method for Digital Twin Applications with High-Resolution Roadside LiDAR Data. Anjiang Chen, Rutgers University
Developing Indicators for Comprehensive Evaluation of Equity in Transportation System. Catherine Abacan and Ruqaya Alfaris, Rowan University

SAFETY IN TRANSPORTATION BREAKOUT

Safety in Transportation Sessions
Unveiling Perceived Travel Safety for Micromobility Users: A Rider-Centered Exploration. Wenwen Zhang, Rutgers University
Determining Key Factors Linked to Injury Severity in Intersection-Related Crashes in NJ. Deep Patel, Rowan University
Understanding Crash Factors in Disadvantaged Communities: An Examination of Socioeconomic Disparities and Road Safety. Ruqaya Alfaris, Rowan University

2023 POSTER PRESENTATIONS

Optimizing Road Infrastructure: A Conceptual Simulation-Based Study of Dynamic Transit Lanes for Connected Private Vehicles
 Connected Vehicles Data: A New Horizon for Estimating Traffic Counts
Properties of Cementitious Materials with Reclaimed Cement
Investigating Performance of Cold In-Place Recycled Asphalt Sections in Accelerated Pavement Testing Using Finite Element Modeling
Investigating the Severity of Curve-Related Roadway Departure Crashes: The Role of Driver Distraction, Automation Levels, and Environmental Conditions
Development of High-Frequency Electromagnetic Induction Technology for Nonintrusive Geophysical Ground Investigation in Cold Regions
Study of the Failure Mechanisms for Inducing Rockfall Hazard in New Jersey Area
Machine Learning Based Structural Health Monitoring of Rocking Bridge System under Seismic Excitation
Truck Parking Availability Prediction Model for Harding Truck Rest Area
Prediction of Critical Strains of Flexible Pavement from Traffic Speed Deflectometer Measurements
Design Study and Potential Implementation of Photovoltaic Noise Barrier for Sustainable Highway
Computer Vision Based Near Miss Detection Among Mixed Traffic Flows Within Intersections
Segment Anything Model for Pedestrian Infrastructure Inventory: Assess Zero-Shot Segmentation on Multi-Mode Geospatial Data


The 25th Annual Research Showcase was organized and sponsored by the NJDOT Bureau of Research in partnership with the New Jersey Local Technical Assistance Program (NJ LTAP) at the Rutgers Center for Advanced Infrastructure and Transportation (CAIT) and co-sponsored by the Federal Highway Administration.

Strategic Workforce Development: Preparing Justice-Impacted Individuals for Transportation, Engineering and Construction Careers

Strategic Workforce Development, an innovative initiative of the Every Day Counts Program, suggests the importance of fostering an environment and partnerships favorable to training programs, pre-apprenticeship programs, and support for women and minorities in the construction workforce, among other strategies. The Rutgers Youth Success Program (RYSP), housed in Rutgers’s Center for Advanced Infrastructure and Transportation (CAIT), has provided several strategic workforce development programming to vulnerable populations in and around Camden, NJ. While the program supports a variety of individuals, a majority of those served are justice-impacted and from historically underserved or vulnerable populations. With the continued success of these services, RYSP has grown and developed, most recently starting a new program focused on enhancing employment access in the transportation, infrastructure, and construction fields, called PACE (Pre-Apprenticeship in Career Education), sponsored by the Apprenticeship Office of NJDOL. The program has also taken a new name to reflect its expansion into serving adults and focusing more closely on employment: Rutgers Employment Success Program (RESP).

We interviewed Todd Pisani, the Training Director of Rutgers Employment Success Programs. Todd has been working for the past ten years on strategic workforce development programs for justice-impacted individuals in Camden, NJ. His work started with the creation of the Rutgers Youth Success Program and has developed into several Camden, New Brunswick, and South Jersey based programs focused on bridging employment gaps for justice-challenged individuals.

Q. Can you tell us about the Rutgers Employment Success Program?

A. The Rutgers Employment Success Program (previously the Rutgers Youth Success Program) supports up to 120 justice-impacted youth in and around Camden, NJ, with job readiness, career exposure, work experience, education, and legal services. The program addresses some of the challenges many young people face following involvement in the juvenile justice system, especially with employment and accessing education. The program is funded by the New Jersey Department of Labor & Workforce Development (NJDOL) and is a collaboration between Rutgers University and the Center for Advanced Infrastructure and Transportation (CAIT).

Participants of the Rutgers Youth Success Program learn from field professionals about automotive repairs

By the end of 2024, we will be serving 400 individuals and hope to increase this number going forward. While the program began with serving young individuals, we have found that expanding into an older age cohort, 18+ years, has been successful. We work directly with vulnerable populations — for example, black and brown people, individuals from historically underserved communities, returning citizens, or otherwise justice impacted people — to address employment barriers. Our approach includes consideration and support for people with mental, behavioral, or psychiatric health challenges. In addition to our on-the-ground work, we advocate for the change of harmful systems that pose barriers to employment by initiating a change in language and policy that have historically slowed progress and support for the populations we serve.

Q. How did you get involved in the Rutgers Youth Success Program and what has kept you involved for the past 10 years? 

A. After several years as an employee affiliated with the Cooperative Extension program at Rutgers, Camden, we were successful in putting together a team that included Dr. Clifton Lacy, former Commissioner of Health and head of the Robert Wood Johnson Foundation that attracted federal funding. That 1.2 million dollar longitudinal research project studied recidivism and violence among justice impacted youth over 3 years, and led me to collaborate with Rutgers CAIT. When a staffing change presented an opportunity, we were able to move the continuation of funding from Cooperative Extension to CAIT. The program remained consistent with its goals and mission and our support for individuals remains the same, but we have been able to expand the program and strengthen our ties to the engineering, transportation, and infrastructure realm.

Q. One of the goals of the Rutgers Employment Success Program is to address some of the barriers under-represented, or justice-challenged individuals face when pursuing a career. What do some of these barriers look like and how is this program targeting these? 

A. The barriers are baked into the system as a whole — and there are many organizations and even political movements that are working to change that trajectory. The most prevalent barriers include:

  • The outrageous and arbitrary time individuals must wait after incarceration to even be considered for some positions. We combat that by pushing for improved hiring policies, advocacy efforts in a variety of environments including discussions with trade unions, partnerships with community colleges and their affiliates, and developing relationships with specific employers and helping them see the value in hiring returning citizens.
  • Trauma and PTSD are common effects of incarceration and experience in the justice system. These conditions may make finding or receiving employment challenging and advocating for oneself even more so. We lead our program from a strengths-based trauma-informed approach, ensuring that everyone is treated with respect, honor, and dignity.
  • Justice-impacted individuals are often restricted from decision-making rooms. We utilize our privilege by inviting in justice-impacted leaders to rooms they often are kept from. We have several justice-impacted individuals on our team, so we lead by example. The resulting interactions with Judges, attorneys and law enforcement encourage human to human interactions and help those in power rethink their language and approaches.
  • Low exposure to higher education. We encourage individuals to dream and follow their professional interests. Our program also provides individuals with tours of colleges and supportive conversations, proving that it is a viable option for them.

Q. How has the Rutgers Employment Success Program been received by justice-challenged individuals? 

A. There are hits and misses, like any group of individuals. We hire people who are reflective culturally of the communities we serve — most of the team are black or brown people, including the team leads. We have several Spanish speakers on the team. And 2 have been justice impacted themselves, one a well-known community leader who spent over 30 years in prison for a crime committed as a teenager. He earned  his degree in Criminal Justice from Rutgers while incarcerated as part of the NJ STEP (Scholarship and Transformative Education in Prisons) program, and has emerged as an amazing advocate for returning citizens, and has helped us link to the returning citizens  community in an authentic, immersive, and heartfelt way.

Our past participants have been extremely helpful with refining our practices by voicing their own experience and suggestions for improvements. Most recently we changed some of our intake paperwork to make it easier to access and friendlier, as requested. Participants have also identified system challenges, like the selective service status letter requirement which automatically creates a barrier for some. We really appreciate this feedback, and we also look to our sponsors for advice and suggestions.

Q. Are there any populations you are having difficulty reaching?

A. The population we serve is mostly minorities and men. We have promoted and recruited our programs across gender identities and have had female program coordinators. However, our most recent research project was a 90/10 split male to female. This is most likely a result of the gender disparity of justice-impacted youth; there are far less women and girls entangled by the justice-impacted world. We have engaged young women in our apprenticeship projects and have a black female instructor who teaches occupational safety and heavy equipment—she is very active and vocal about bringing women into the trades. Our hope is to encourage more women into the field; however, we don’t necessarily want more females to be impacted by justice. Since the NJDOL has infused the importance of targeting other populations into their grant opportunities by listing the variety of individuals traditionally harder to reach or less likely to consider the trades, we expect that employers and trade unions will follow suit and make diversity and inclusion a priority, if they haven’t already.

Q. Why are transportation and infrastructure important fields for the population you serve to connect to?

A. Many of our individuals we serve or have served identify hands-on work as appealing to them. They tend toward less office-based employment and more toward the trade industries, including transportation. Other fields of interest include construction, heavy equipment, offshore wind and other green energy solutions.

Q. Speaking of participant interest in construction and transportation careers, tell us about the new RYSP program, PACE.

A. The Pre-Apprenticeship in Career Education program, or PACE, is an exciting new apprenticeship program that has recently been added to the suite of Rutgers Youth Success Program services. The program is modeled after past NJ Department of Labor and Workforce Development models and will prepare participants with the necessary experience to apply for apprenticeships. Our program began in July 2023 and currently has funding for 30 participants from around the North Brunswick area. PACE goes beyond the foundational support that RYSP provides to disconnected or justice impacted youth, by increasing direct services to emerging adults 17-24 years old who are not immediately interested in or applying to college but would like to explore immediate career options.

Flyer for PACE Program Targeted to Heavy Equipment Operations

This program follows several successful programs through RESP, and in many cases incorporates the lessons learned from previous participants. Individuals not pursuing a degree following high school are often encouraged into service industry fields and healthcare, as preparation programs are more readily available. However, past participants have really expressed interest in hands-on skill training and work. Therefore, PACE is aiming to address this gap by establishing pathways for underserved populations to work in the transportation, infrastructure, or construction fields. In this case, participants will move through the Operating Engineers introductory curriculum, which includes:

  • 10 hours of on-the-job shadowing, with placement support through Hudson County Community College;
  • 30 hours of training to receive OSHA construction industry certification that will be provided by our long-standing partnership with Myers Crossing LLC.
  • Taking the Operating Engineers introductory course at Hudson County community College
  • Exposure and connections to Local 825, the International Union of Operating Engineers, which has a hands-on training facility and a training initiative with Hudson County Community College, its Earn and Learn Program.  

The goal is to expand the possible futures of each participant, allowing them to:

  • Begin an entry-level job in the transportation, infrastructure, or construction field.
  • Participate in a registered apprenticeship program.
  • Enroll in an educational program, like the Associate of Applied Science in Technical Studies at Hudson County Community College

We anticipate making employment, apprenticeship, or full-time training or education quality placements   for at least 20 of our pre-apprentices in operating engineering by December 2024.

Debbie Myers of Myers Crossing, LLC instructing a PACE participant during an OSHA training session

We also have built a relationship with NJ Transit, NJDOT, and other large infrastructure related employers and are hopeful this will assist with job placements for younger people (18-19 years), which can be more challenging.

Q. In addition to the new PACE program, you are listed as the part of the lead research team for the EDC-7 Pilot Evaluation of Strategic Workforce Development for Justice-Challenged Youth research project. Could you tell us more about this work?

A. This is a very new research project, so I don’t have a lot to share yet. Our team will develop a set of best practices for strategic workforce development in the transportation and infrastructure fields using a nationwide survey of current workforce development programs that assist justice-impacted youth. The research is managed by the National Center for Infrastructure Transformation, led by Prairie View A&M University in Texas, and performed by Rutgers University and the Prairie View A&M. My hope is to strengthen our current efforts and support multiple projects through this project.

Q. What types of agencies will benefit from these best practices for Strategic workforce development? 

A. We are voting members of the Camden Youth Services Commission; each county has a version of this. The biggest benefactor for this research project will be the local youth justice system folks who are always seeking alternative methods for creating positive preventive and diversionary pathways as well as providing alternatives to detention or other punitive responses especially for young, justice-impacted individuals. Partner organizations that include the community colleges, Pathstone, Volunteer’s of America, and others will benefit from having access to a database of models for moving impacted young people into the workforce or training sectors. The transportation employer sectors, and other employers can benefit when presented with supportive data from other areas where these projects have found success. For example, if they are doing something amazing and successful in California that we can replicate and demonstrate its efficacy using data, it can potentially erode resistance and allow for larger organizations to overcome the risk factor and partner with organizations like Rutgers providing the support services to lean toward success for all. 

Q.  Do you have any final thoughts that you would like to share?

Todd Pisani takes group selfie with participants and colleagues from the Youth Success Program.

A. We had an 82 percent benchmark attainment rate at the conclusion of the pilot Bridges program, which we are now in the first year of a 3-year continuation cycle. That project grew from serving 40 during the beginning of the pandemic when no in-person contact was allowed, to 100 served in the Camden area alone in 2022, and we are now on track to serving 120 in Camden and New Brunswick.

We have sought to successfully intertwine research and community-serving initiatives through multiple projects – our four NJDOL projects have been specifically project-based with no research specifically attached to them.  The EDC-7 Pilot Evaluation Study of Strategic Workforce Development for Justice-Challenged Youth, as well as others, can help to attract attention, provide reinforcement for our effort, and place the work itself into a scholarly context. We believe we can use the research to refine our projects, but also improve the design of research about the populations we serve.

Language is an important component of our work; for instance, we started using the term “justice impacted” instead of justice involved, primarily to demonstrate that nobody really wants to be “involved’ in justice world, and to plant the seed that there is an impact here that can shift the whole picture for many folks, especially black and brown individuals who have been disproportionately targeted and treated differently at all levels of the justice system, including in policing, sentencing structure and disciplinary policies in schools. Research helps solidify philosophical or observational notions, and provides an undergirding for the work itself, which for our implementation teams is the most important factor—helping to shift the trajectory for a young person, or an older individual for that matter. 


Resources

Rutgers Youth Success Program
https://cait.rutgers.edu/facilities-equipment/rutgers-youth-success-program/

Federal Highway Administration, Every Day Counts Round 7, Strategic Workforce Development
https://www.fhwa.dot.gov/innovation/everydaycounts/edc_7/strategic_workforce_development.cfm

Hudson County Community College, Workforce Development
https://www.hccc.edu/programs-courses/workforce-development/index.html

International Union of Operating Engineers, Local 825
http://www.iuoe825.org/

NJ Community College Consortium for Workforce and Economic Development
https://njworkforce.org

Camden Youth Services Commission
Youth Services Commission | Camden County, NJ

National Center for Infrastructure Transformation Prairie View
National Center for Infrastructure Transformation (NCIT) – Led by Prairie View A&M University (pvamu.edu)

Associate of Applied Science in Technical Studies at Hudson County Community College
Technical Studies AAS (hccc.edu)

Operating Engineers Local 825 Earn and Learn Program
825 Earn and Learn

For information on current workforce development programs see:

NJ Department of Labor, Office of Apprenticeships
https://www.nj.gov/labor/career-services/apprenticeship/

NJ Pathways to Career Opportunities
https://njpathways.org/centers-of-workforce-innovation/

For information on re-entry support programs in New Jersey visit: Governor’s Reentry Training & Employment Center NJRC (njreentry.org)

For information on re-entry support for women, visit: The_Womens_Project_2023.pdf (njreentry.org)

Research Underway to Address Travel Needs of Cognitively Divergent Individuals in Complete Streets Plans

The Complete Streets planning approach pushes for a future in which people of all ages and abilities can safely travel. Recently signed NJ legislation takes an important step toward this vision by ensuring that the travel needs of cognitively divergent individuals are addressed in Complete Streets Plans.

In January 2023, Governor Phil Murphy signed S-147 into law, directing the New Jersey Department of Transportation (NJDOT) to update its Complete Streets policy to consider and implement design elements and infrastructure projects that promote the ability of persons diagnosed with autism spectrum disorder (ASD) and persons with intellectual and developmental disabilities (IDDs) to travel independently.

This requirement follows important research conducted by Rutgers CAIT and VTC and funded by NJDOT, in which the travel behavior of over 700 adults with autism spectrum disorder (ASD) was studied. The research concluded that individuals with ASD, seeking to travel independently, experience extraordinary transportation barriers that are complicated by the state’s auto-oriented street design and land uses. With fewer such persons driving cars, an improved network of walking and biking infrastructure opens a world of opportunities for engagement in civic life and to reaching essential destinations via public transportation.

The Complete Streets Summit event will include a session on efforts underway to revise policies to promote travel independence for ASD with IDD persons.

NJDOT has undertaken a project that seeks to address how to accommodate the travel needs of people with ASD and/or IDDs through policy and design. The Department’s Bureau of Safety, Bicycle and Pedestrian Programs has engaged the Rutgers-Voorhees Transportation Center, NV5, Toole Design Group and a working group of NJDOT planners and engineers to assist with addressing the travel needs of cognitively divergent persons – and with meeting the requirements of the legislation.

The research team is developing a primer on Complete Streets and neurodivergence and will use the information gathered to help NJDOT develop universal design guidelines that will ensure the Department’s Complete Streets policy considers the needs of those with ASD and IDDs. The team will be sharing more information at the upcoming 2023 New Jersey Complete Streets Summit on November 1st. Not yet registered? Register Here.

More information on the past and ongoing research underway and how cognitive functioning can differ among members of ASD and IDD populations is summarized in this short article, Complete Streets for Individuals with Autism Spectrum Disorder (ASD) and Intellectual and Developmental Disabilities (IDDs), on the NJ Bicycle and Pedestrian Resource Center website.