

Calibration / Development of Safety Performance Functions for New Jersey

Гн

hh

집

 $\overline{}$

10/17/2018

Bekir BARTIN, Kaan Ozbay, Hani Nassif, Chuan Xu

c2smart.engineering.nyu.edu

Overview

- Background on Safety Performance Functions and Highway Safety Manual
- Project Objectives
- Literature Review
- Compiled Dataset
- Rural Two-Lane Intersections
- Rural Two-Lane Segments
- Next Steps

Гн

Brief Review of the Safety Performance Functions (SPF)

- The basic of the predictive models in the Highway Safety Manual (HSM)
- Estimates the predicted average frequency of individual roadway segments or intersections for specific base conditions.
- Developed with observed crash data for a set of <u>similar sites</u> (intersections or homogenous roadway segments)

권

1.11

RUTGERS

- Calibration
 - General level of crash frequencies may vary for different jurisdictions
 - SPFs in the HSM are developed using data <u>from other states</u>, cannot be transferred directly to other locations and times
- Crash Modification Factors (CMFs)
 - To account for <u>differences between the base conditions and the specific conditions</u> of the facility site

RUTGERS

• Functional Form of SPFs in the HSM

Rural 2-lane segments

 $N = (AADT)(L)(365)(10^{-6})(e^{-a})$

Rural multilane and urban segments

 $N = \exp(a + b.\ln(AADT) + \ln(L))$

Intersections

 $N = \exp(a + b.\ln(AADT_{maj}) + c.\ln(AADT_{min}))$

Where, N is the predicted number of crashes, L is segment length, AADT is annual average daily traffic of roadway segment, $AADT_{maj}$ and $AADT_{min}$ is AADT on major and minor intersection legs, respectively.

Facilities in the HSM

N

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

Intersections

Rural Two-Lane, Two-Way Roads HSM NJ Definition Туре Acronyms Roadway $\sqrt{}$ $\sqrt{}$ R2U Rural two lane roads Segments Three-leg minor road stop controlled intersections on $\sqrt{}$ $\sqrt{}$ R23ST rural two lane roads Three-leg signalized intersections on rural two lane **R23SG** $\sqrt{}$ roads Intersections Four-leg minor road stop controlled intersections on $\sqrt{}$ R24ST rural two lane roads Four-leg signalized intersections on rural two lane $\sqrt{}$ R24SG V roads **Rural Multilane Highways** Туре HSM NJ Definition Acronyms R4U(RMU) Rural four-lane undivided roads $\sqrt{}$ $\sqrt{}$ R4D(RMD) Rural four-lane divided roads Roadway R4F **S**egments Rural four-lane freeways R6+F Rural six+ lanes freeways Three-leg minor road stop controlled intersections on $\sqrt{}$ $\sqrt{}$ **RM3ST** rural four lane roads

roads

roads

rural four lane roads

RM3SG

RM4ST

RM4SG(R44SG)

RAST

Three-leg signalized intersections on rural four lane

Four-leg minor road stop controlled intersections on

Four-leg signalized intersections on rural four lane

Rural all-way stop controlled intersections

Facilities in the HSM

				Urban and Suburban Arterials
Туре	HSM	NJ	Acronyms	Definition
	\checkmark	\checkmark	U2U	Two lane urban and suburban arterials
	\checkmark	\checkmark	U3T	Three lane (with centerTWLTL) urban and suburban arterials
	\checkmark	\checkmark	U4U(UMU)	Four lane undivided urban and suburban arterials
	\checkmark	\checkmark	U4D(UMD)	Four lane divided urban and suburban arterials
Roadway Segments			U4F	Four-lane urban freeways
Segments	\checkmark	\checkmark	U5T	Five lane (with center TWLTL) urban and suburban arterials
			U6F	Six-Lane urban Freeways
			U8+F	Eight-Lane urban Freeways
			UIA	Urban one-Way Arterials
	\checkmark	\checkmark	U3ST	Three-leg minor road stop controlled intersections on urban and suburban arterials
	\checkmark	\checkmark	U4ST	Four-leg minor road stop controlled intersections on urban and suburban arterials
Intersections	\checkmark	\checkmark	U3SG	Three-leg signalized intersections on urban and suburban arterials
	\checkmark	\checkmark	U4SG	Four-leg signalized intersections on urban and suburban arterials
			UAST	Urban all-way stop controlled intersections

Data Requirements

 Data needed for Calibration SPF per Facility Type in HSM *-required

 \Rightarrow -desired

		Data Requirements per Facility Type																
Data Elements	Rural Two-Lane, Two- way Roads			Rur	al Mul	ltilane	High	ways	Urban and Suburban Arterials									
	R2U	R23ST	R24ST	R24SG	R4U	R4D	RM3ST	RM4ST	RM4SG	UZU	U3T	U4D	U4U	UST	U3ST	U4ST	U3SG	U4SG
AADT of Major Road	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
ADT of Minor Road		*	*	*			*	*	*						*	*	*	*
egment Length	*				*	*				*	*	*	*	*				
ane Width	*				*	*												
houlder Width	*				*	*												
Shoulder Type	*				*													
Iorizontal Curve Data	*																	
ertical Grades	☆																	
Driveway Density	☆									*	*	*	*	*				
Centerline Rumble Strips	☆																	
Passing Lanes	☆																	
our-lane Section	☆																	
WLTLs	*																	
oadside Hazard Rating	☆																	
de Slope					*													
oadside Fixed Object Density										☆	☆	☆	☆	☆				
ledian Type and Width						*				*	*	*	*	*				
ighting	☆	*	*	*	☆	☆	*	*		☆	☆	☆	☆	☆	*	*	*	*
osted Speed Limit										*	*	*	*	*				
utomated Speed Enforcement	☆				☆	☆				☆	☆	☆	☆	☆			*	*
ntersection Skew Angle		\$					☆									<u> </u>	<u> </u>	
Left_Turn Signal Phsing		1	<u> </u>													-	*	*
Right_Turn Signal Phasing	<u> </u>														-		÷.	÷.
ntersection Left-Turn Lane		*	*	*			*	*							*	*	*	*
ntersection Right-Turn Lane		*	*	*			*	*							*	*	*	*
Right-turn-on-red Prohibited																	*	*
Dn-street Parking Type										*	*	*	*	*				
faximum lanes for pedestrian crossing																	☆	☆
edestrian Volumes																	☆	☆
us Stops within 1000 ft																	\$	\$
chools within 1000 ft																	☆	☆
Alcohol sales establishments within 1000 ft																	*	 ☆

RUTGERS

Objectives

- To let the SPFs better accommodate the local data, two strategies are usually taken:
 - To calibrate SPFs provided in HSM so that the contents of HSM can be fully leveraged.
 - To develop location-specific SPFs regardless of the predictive modeling framework in the HSM.
- The main objective of this research project is to either (1) calibrate the SPFs provided in the HSM using New Jersey (NJ) data or (2) develop new NJ-specific SPFs.
- A total of 20 facilities are considered in this project.
- Calibrating the SPFs used in the predictive models of the HSM requires data from a limited number of sites (for each facility type) from NJ.
- Developing NJ-specific SPFs would provide more accurate results but requires data from a larger sample of sites, and also involve the application of statistical techniques.

Progress

Literature Review

- A comprehensive review of the relevant literature has been conducted.
- A common theme in most studies is the ambiguity of some of the HSM guidelines.
- For example, HSM requires homogeneous roadway segments of 0.1 mile or longer. Many studies reported difficulty in following this guideline.
- HSM requires that 30-50 facilities should be used with a total of more than 100 crashes per year for the calibration process. Some studies reported less number of crashes, yet proceeded with the calibration process (e.g. Alluri et al., 2014 – FL study).
- Some studies raised the issue of crash reporting thresholds in the states that the HSM SPFs are based on. (e.g. in OR only crashes with over \$1,500 damage are reported as PDO)

Н

1.11

Literature Review

- Lack of AADT values, especially at non-state roadways were a common issue. For example, the Oregon study (Dixon et al, 2012) developed model to estimate AADT minor for rural and urban intersections.
- Some studies, such as NC study (Srinivasan and Carter, 2011 and Shin et al. 2014), reported inconsistencies between the electronic database, and suggested manual double-checking the data points.
- The most common issue is the fact that states' data sets were not built for the HSM, and extracting the required and desired data requires excessive manual work. (e.g. curvature data).
- The issues can be broadly classified as (a) Vague HSM guidelines, (b) adequate coverage of traffic data, (c) incomplete data, (d) lack of roadway inventory data, and (e) data integration and interoperability.

Ы

1.11

러

Interviews

긚

 The research team reached out to the researchers who conducted SPF projects for other state DOTs, and set up in person meetings (PA, SC, MO, KS, KT, NY).

The following are a few important notes from these interviews:

- Manual data extraction is almost required. The most common tools used are the statedeveloped video referencing tools and the Google Maps.
- The crash locations as reported by the police officers are found to be erroneous, especially at intersections.
- None of the interviewed states investigated the validity of the AADT for major and minor legs at the intersections. They mentioned that they used the AADT shown in the database and not further looked into proximity of AADT stations to the intersections.

12

НН

1.11

Compiled Data

13

Available Data Sources

- Data are required for determining homogeneous roadway segments and intersections, calibrating the SPFs, and applying the SPFs to specific roadway segments and intersections.
- The available data sources are:
- Volume Data
 - New Jersey Traffic Monitoring Program 2009-2015
 - TMC at urban intersections
- Road Features Data
 - Straight Line Diagrams (2017)

Additional roadway feature data need to be manually extracted

- Video Log (Website)
- Horizontal curvature data on select rural roads
- Voyager Crash Data
 - 2009 to 2016

14

Н

		Rural Two-Lane	, Two-way Roads		Rural Multilane Highways						
Data Elements	R2U	R23ST	R24ST	R24SG	R4U	R4D	RM3ST	RM4ST	RM4SG		
Crash	Voyager	Voyager	Voyager	Voyager	Voyager	Voyager	Voyager	Voyager	Voyager		
AADT of Major Road	Traffic Count Data	Traffic Count Data	Traffic Count Data	Traffic Count Data	Traffic Count Data	Traffic Count Data	Traffic Count Data	Traffic Count Data	Traffic Count Data		
AADT of Minor Road		Traffic Count Data	Traffic Count Data	Traffic Count Data			Traffic Count Data	Traffic Count Data	Traffic Count Data		
Segment Length	Segmentation				Segmentation	Segmentation					
Lane Width	SLD->ln_pave_width				SLD->ln_pave_width	SLD->In_pave_width					
Shoulder Width	SLD->ln_shou_width				SLD->In_shou_width	SLD->In_shou_width					
Shoulder Type	SLD->In_shoulder_type				SLD->In_shoulder_type						
Horizontal Curve Data	GIS Shape Files										
Vertical Grades	☆										
Driveway Density	SLD->pt_intersection										
Centerline Rumble Strips	SLD->rumble_strip										
Passing Lanes	SLD->In_passing_zone										
Four-lane Section	SLD->In_lane_count	ſ									
TWLTLs	SLD->In_lane_count										
Roadside Hazard Rating	☆										
Side Slope					*						
Roadside Fixed Object Density											
Median Type and Width						SLD->ln_median_type SLD->ln_median_width					
Lighting	manual->google earth	manual->google earth	manual->google earth	manual->google earth	manual->google earth	manual->google earth	manual->google earth	manual->google earth			
Posted Speed Limit	<u> </u>				002	002	002	<u> </u>			
Automated Speed Enforcement	☆				☆	☆					
Intersection Skew Angle		pt_int_approach	pt_int_approach				pt_int_approach	pt_int_approach			
Left Turn Signal Phasing		pt_int_upprouch	pr_nn_upprouch				pt_int_upprouch	pt_m_upprouch			
Right Turn Signal Phasing											
Right_1 the Signal I having											
Intersection Left-Turn Lane		manual->google_earth	manual->google_earth	manual->google_earth			manual->google_earth	manual->google_earth			
Intersection Right-Turn Lane		manual->google_earth	manual->google_earth	manual->google_earth			manual->google_earth	manual->google_earth			
Right-turn-on-red Prohibited											
On-street Parking Type											
Maximum lanes for											
pedestrian crossing											
Pedestrian Volumes											
Bus Stops within 1000 ft											
Schools within 1000 ft											
Alcohol sales establishments within 1000 ft											

			U	rban and Suburban Arteria	ıls			
U2U	U3T	U4D	U4U	UST	U3ST	U4ST	U3SG	U4SG
Voyager	Voyager	Voyager	Voyager	Voyager	Voyager	Voyager	Voyager	Voyager
Traffic Count Data	Traffic Count Data	Traffic Count Data	Traffic Count Data	Traffic Count Data				
					Traffic Count Data	Traffic Count Data	Traffic Count Data	Traffic Count Data
Segmentation	Segmentation	Segmentation	Segmentation	Segmentation				
SLD->pt intersection								
	· -	· -	• -	· -				
☆	☆	☆	☆	☆				
SLD->In_median_type	SLD->In_median_type	SLD->ln_median_type	SLD->ln_median_type	SLD->ln_median_type				
SLD->In_median_width	SLD->In_median_width	SLD->In_median_width	SLD->In_median_width	SLD->In_median_width				
manual->google_earth	manual->google_earth	manual->google_earth	manual->google_earth	manual->google_earth	manual->google_earth	manual->google_earth	manual->google_earth	manual->google_earth
SLD->ln_speed	SLD->ln_speed	SLD->ln_speed	SLD->ln_speed	SLD->ln_speed				
\$	☆	☆	☆	☆			n/a	n/a
							manual->google_earth	manual->google_earth
							0 0 1	0 0 1
							manual->google_earth	manual->google_earth
					manual->google_earth	manual->google_earth	manual->google_earth	manual->google_earth
					manual->google_earth	manual->google_earth	manual->google_earth	manual->google_earth
							manual->google_earth	manual->google_earth
*	*	*	*	*				
							*	\$
							☆	☆
							GIS Shape Files	GIS Shape Files
							GIS Shape Files	GIS Shape Files
							☆	☆

Rural Two-Lane (R2) Intersections

Background on R2 Intersections

• The HSM has SPF for three types of intersections for R2 roadways:

Three-leg stop-controlled intersections (R23ST); Four-leg stop-controlled intersections (R24ST); Four-leg signalized intersections (R24SG).

• Data required by the HSM:

Data Elements	R23ST	R24ST	R24SG
AADT of Major Road	*	*	*
AADT of Minor Road	*	*	*
Lighting	*	*	*
Intersection Skew Angle	\$	\$	
Intersection Left-Turn Lane	*	*	*
Intersection Right-Turn Lane	*	*	*

Note: ★required, ☆ desirable

 The base conditions are: Zero skew angle, no left-turn and right-turn lanes and no lighting present.

Ы

 $\overline{}$

Background on R2 Intersections

SPF-Base Condition

Туре	SPF	Reliable AADT Range
R23ST	$N_{spf 3ST} = exp[-9.86 + 0.79 \times ln(AADT_{maj}) + 0.49 \times ln(AADT_{min})]$	$AADT_{maj} \in [0, 19500]$ $AADT_{min} \in [0, 4300]$
R24ST	$N_{spf\ 4ST} = exp[-8.56 + 0.60 \times ln(AADT_{maj}) + 0.61 \times ln(AADT_{min})]$	$AADT_{maj} \in [0, 14700]$ $AADT_{min} \in [0, 3500]$
R24SG	$N_{spf\ 4SG} = exp[-5.13 + 0.60 \times ln(AADT_{maj}) + 0.20 \times ln(AADT_{min})]$	$AADT_{maj} \in [0,25200]$ $AADT_{min} \in [0,12500]$

- CMF-Specified Condition
 - Four CMFs including intersection skew angle, intersection left-turn lanes, intersection right-turn lanes, lighting are used.

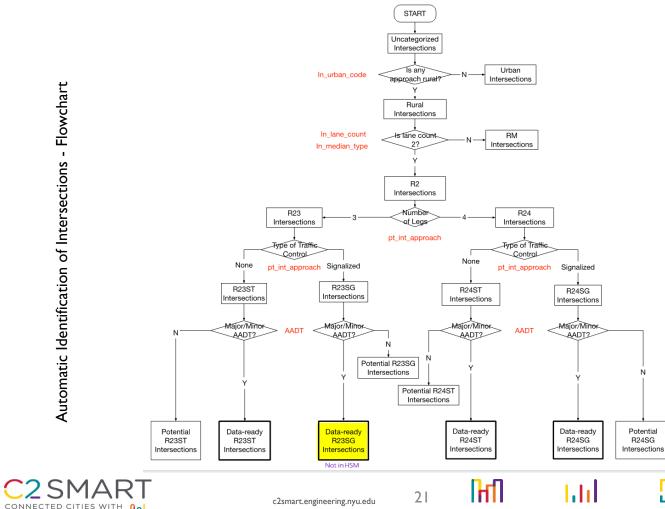
19

hh

집

 \leftarrow

Automatic Identification of Intersections


러

1.11

- The latest version of the Straight Line Diagrams (SLD) was selected since it includes a new table that indicates the type of intersections.
- All the tables embodying the required information were exported as CSV files from Microsoft Access. The names of the tables are: In_urban_code, In_lane_count, In_median_type, In_pave_width, In_shou_width, Ist_sign_code, Ist_sign_type, pt_highway_lighting, pt_int_approach, pt_intersection, pt_sign.
- Intersections were identified automatically by the developed code in R language.
- The video logs provided by the NJDOT and Google Earth street view were utilized to complement the occasionally missing information in for some intersections and for verification purposes.

20

CONNECTED CITIES WITH SMART TRANSPORTATION

님

R2 Intersection Sampling

[Туре		R23ST	R23SG	R2	4ST	R24SG	
	Preliminary Sample Size		422	21	220		94	
	Final Sample Size		314	15	1	49	45	
Тур	e Average Major AADT			Average Intersection Number between Minor Station and the Target Intersection		hor between Major Station and the Target Intersection		Average Distance between Minor Station and the Target Intersection (mile)
R23S	T 4,703	1,109	1.17	1.30			0.75	1.22
R23S	G 13,720	5,414	0.86	1.27			0.48	0.63
R24S	T 4,453	958	1.00	1.13			0.68	1.09
R24S	G 10,969	3,594	I.68	1.27			0.60	0.61

22

[h]

님

Calculating the Calibration Factor

러

 $\overline{}$

1.11

The calibration factor is calculated by:

$$C = \frac{N_{observed}}{N_{estimated}}$$

Where, C is the calibration factor, $N_{observed}$ is the total observed crash frequency and $N_{estimated}$ is the total crash frequency calculated by the SPF.

Data used to estimate the calibration factors for R2 intersections include:

- Geometric data from SLD.
- Geometric data extracted using Google Earth[™] (e.g. left turn, right turn lanes and lighting).

23

ЫЧ

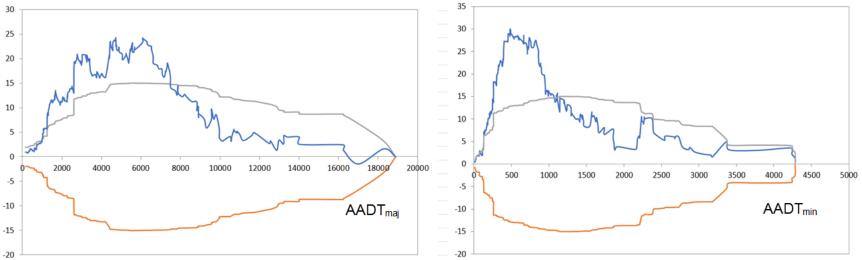
- AADT data from sensor database.
- Crash data between 2011-2015 from the Safety Voyager database.

 The Calibrator tool developed by the FHWA was used to calculate calibration factors and also measure their goodness of fit.

Intersection Type	Calibration Factor	Standard Error	Coefficient of Variation
R23ST	0.882	<u>+</u> 0.072	0.084
R24ST	0.919	<u>+</u> 0.093	0.104
R24SG	0.883	±0.120	0.140

 According to the FHWA report*, a reasonable upper threshold for the Coefficient of Variation (CV) of a calibration factor is 0.10 to 0.15.

24

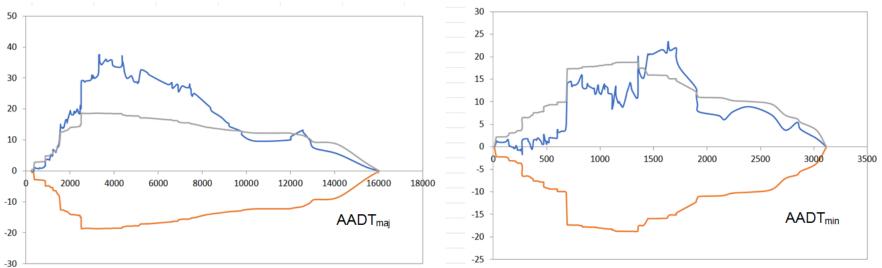

In that respect, the results are found to be acceptable.

*Lyon, C., Persaud, B. and Gross, F.(2016). "The Calibrator: An SPF Calibration and Assessment Tool User Guide. FHWA-SA-17-016

.11

CURE plots of **R23ST** with respect to $AADT_{maj}$ and $AADT_{min}$ variables.

Sample Size: 314


25

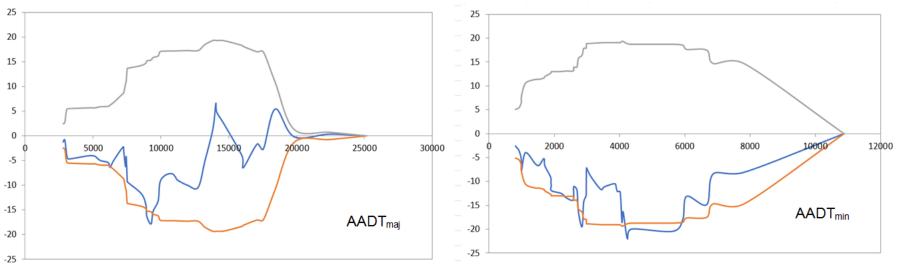
님

 \leftarrow

9

CURE plots of **R24ST** with respect to $AADT_{mai}$ and $AADT_{min}$ variables.

Sample Size: 149


26

러

 $\overline{}$

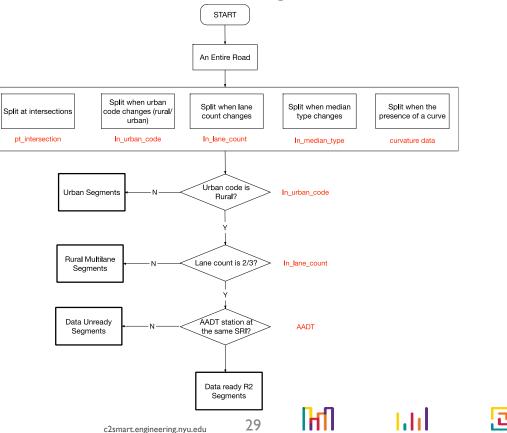
1.11

CURE plots of **R24SG** with respect to $AADT_{mai}$ and $AADT_{min}$ variables.

Sample Size: 45

27

님

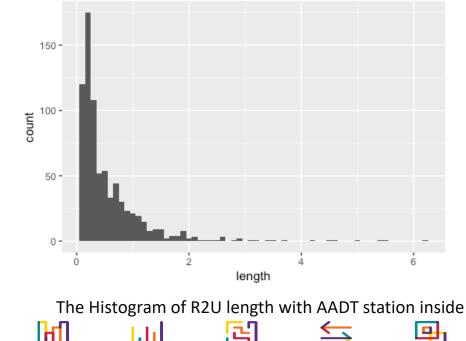

 \leftarrow

9

Rural Two-Lane (R2) Segments

Automatic Identification of R2 Segments

لک آ RUTGERS NYU



R2 Segments

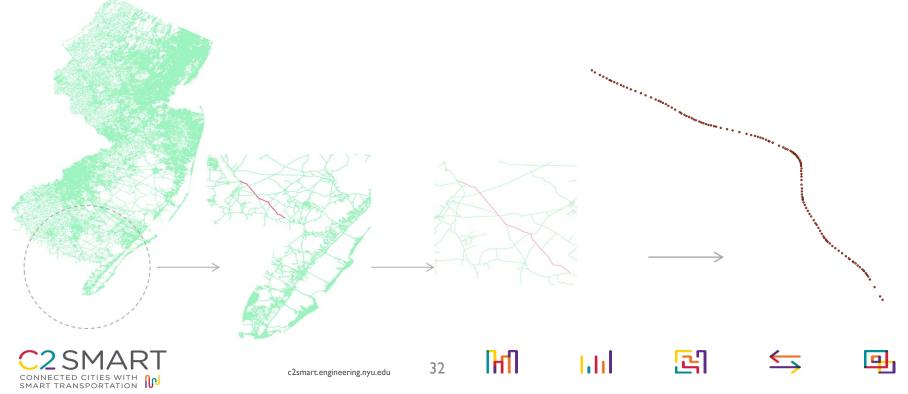
- The research team conducted a preliminary segmentation of R2 segments via a computer code developed in R statistical package.
- R2 segments (with AADT)
 - Total count: 13,886
 - Length> 0.1 mile: 5,847 (42.1%)
 - AADT station inside and length > 0.1:756

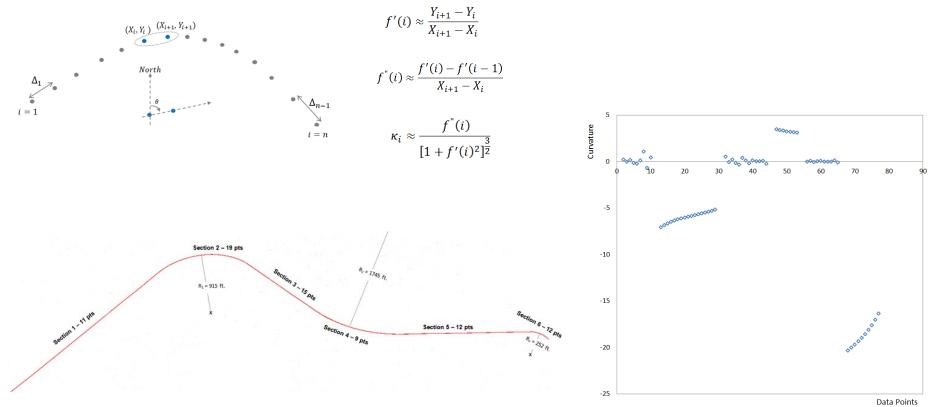
- The R2Us with AADT station inside were used in calibration
 - Average segment length: 0.58
 - AADT out of range percentage: 1.96%

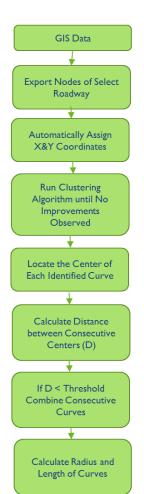
30

- The research team decided to extract the horizontal curvature data of R2 segments using the GIS map of NJ roadways.
- This approach is to minimize the manual labor and increase the accuracy of data extraction.
- It was found that horizontal data extraction using Google Earth as performed in previous studies are prone to errors, especially in detecting and measuring radii of compound curves.
- In order to extract this important dataset, the team used a novel clustering based approach.
- It identifies horizontal curves by using approximated curvature values of data points from GIS roadway centerline maps.

Н



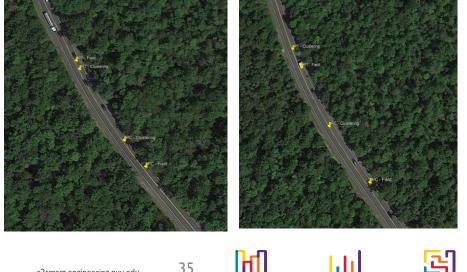




• NJ GIS map available at NJDOT website is used to extract horizontal curvature data

- In order to identify contiguous segments with similar changes in bearing angles, a modified global k-means clustering algorithm is implemented in C programming language.
- Below table compares the curvature data processed by the approach of the research team versus the data collected on the field.

	F	ield Measuren	nent	Clustering Approach			
Curve	Start MP	End MP	Radius	Start MP	End MP	Radius	
1	0.57	0.74	1,268	0.59	0.75	1,275	
2	0.95	1.1	1,109	0.93	1.16	1,127	
3	1.71	1.75	1,309	1.70	1.80	1,592	
4	1.97	2.04	2,032	2.01	2.07	1,508	
5	2.15	2.21	1,226	2.16	2.23	1,608	
6	2.29	2.35	2,107	2.23	2.38	3,215	
7	2.61	2.68	1,255	2.60	2.71	1,211	
8	2.81	2.85	726	2.82	2.90	853	
9	3.03	3.08	845	3.05	3.10	1289	
10	3.21	3.3	474	3.23	3.32	506	
11	3.6	3.69	1,938	3.61	3.68	1,931	
12	4.41	4.46	1,929	4.39	4.44	2,510	
13	4.63	4.74	1,602	4.60	4.69	1,659	
14	7.4	7.49	652	7.42	7.49	655	
15	7.7	7.78	1,679	7.73	7.76	2,328	



- The correlation coefficient between two methods is 0.86.
- There are some significant differences between the two approaches.

c2smart.engineering.nyu.edu

These differences are based on differences in finding the start (PC) and the end (PT) of a horizontal curve. Such differences between different field observations are also reported in

the literature*.

*Findley et al (2013). "Collecting Horizontal Curve Data: Mobile Asset Vehicles and Other Techniques". Journal of Infrastructure Systems. Vol. 19 Issue 1 pp. 74-84.

- The developed clustering program has been modified to process all rural roadways in NJ.
- Horizontal curves along these roadways were identified and the corresponding horizontal data were extracted automatically.
- Currently, the calibration / development of SPFs are in progress.

ing.nyu.edu 3

36 **hf**

 $\overline{}$

권

1.11

Next Steps

- Immediate Next Steps
 - Calibration / Development of R2 Segments
 - Calibration / Development of Urban Intersections
- Next Quarter
 - Calibration / Development of Urban Segments

 \leftarrow

Thank you for listening.

[h]

