Evaluation of Performance of Bridge Deck with UHPC and LMC Overlays through Accelerated Structural Testing

Nenad Gucunski Civil and Environmental Engineering Center for Advanced Infrastructure and Transportation (CAIT)

26th Annual NJDOT Research Showcase - "Pathway to Sustainability"

Significance of Understanding Bridge Deck Performance

- Concrete decks, due to their more direct exposure to environmental and traffic loads, deteriorate faster than other bridge components.
- Relationships between numerous factors and deck performance have been examined in the field, but are not well defined. Those include:
 - traffic load,
 - climatic conditions,
 - maintenance practices,
 - age,
 - reinforcement type and protective layers,
 - supporting superstructure, etc.
- How we can develop more comprehensive understanding of bridge deck performance in a relatively short time?

Outline

- Bridge deck condition assessment and performance monitoring by nondestructive evaluation (NDE) technologies
 - Accurate and quantifiable condition assessment
 - Capturing of deterioration progression through periodical NDE surveys
 - Identification of primary causes of deterioration
- Description of the BEAST facility for accelerated testing
- Results of the accelerated performance evaluation of bare and overlaid bridge decks
 - Importance of baseline measurements
 - Capturing of deterioration and defect formation progression
 - Comparison of performance of bare and overlaid decks

Bridge Deck Condition Assessment and Monitoring by Nondestructive Evaluation (NDE) Technologies

Reinforced Concrete Deterioration and Defect Types of Primary Interest

Manual NDE Data Collection on Bridge Deck (Haymarket Bridge, VA)

Electrical Resistivity Maps for Haymarket Bridge 2009-2015

Half-Cell Potential Maps for Haymarket Bridge 2009-2015

Impact Echo Delamination Maps for Haymarket Bridge 2009-2015

GPR Maps for Haymarket Bridge 2009-2015

Comparison of NDE Technology Results for 2015

Condition Deterioration Progression 2009-2015

Condition Index Degradation Curves for Four NDE Technologies – Haymarket Bridge

Condition Index Degradation Curves for Four NDE Technologies – Haymarket Bridge

BEAST (Bridge Evaluation and Accelerated Structural Testing) Facility Description Accommodates complete bridge superstructures 50 ft by 28 ft by 5 ft

BEAST under Construction

eload

ction beam

SI

Two-axle live loading at 10 to 60 kips; up to 17,000 cycles per day. As used, one year equivalent to about 70 years of a bridge with ADTT of 1000.

Environmental chamber

RUTGERS Center for Advanced Infrastructure and

0 to 104F degrees rapid-cycling temperature fluctuation

Precipitation and salt brine application (1% soluble solution to fully saturated)

Results of the Performance Evaluation of Bare and Overlaid Concrete Decks

Bridge Deck Performance Evaluation Projects

- Phase 1 Performance of Bare Concrete Bridge Decks 2.05 million live loading passes
- Phase 2 Performance of Overlaid Concrete Bridge Decks 3.2 million live loading passes
 - Bare deck from Phase 1 hydrodemolished down to the top rebar level
 - Half of the deck overlaid with an UHPC (ultra high performance concrete) and half with an LMC (latex modified concrete) overlay
- Funded by FHWA Long Term Bridge Performance Program

BEAST - Test Sample Steel Superstructure

BEAST – Finished Deck with NDE Data Collection Grid

> 1ft by 1 ft (30 cm by 30 cm)

BEAST – Loading Frame and Environmental Chamber

Phase 1 (Bare Deck) Uninterrupted BEAST Operation

Spatial Distribution of Live Loading Passes

Over 1.5 million passes of 50,000 lb live load in total for seven load paths.

Environmental Loading

- Heating/cooling mode is cycled every 8 hours
- Room temperature fluctuates 0-80°F, to achieve 20-40°F cycle at the deck's top reinforcement level
- 30 gal of 6% salt brine applied at the end of each heating cycle
- Close to 100 heating/cooling cycles and over 4500 gal of salt brine applied

Typical Deck Response to Temperature Cycling

*Temperatures recorded at top reinforcing layer

BEAST – Primary NDE Data Collection Methods

- Electrical Resistivity (ER)
- Half-Cell Potential (HCP)
- Ground Penetrating Radar (GPR)
- Impact Echo (IE)
- Ultrasonic Surface Waves (USW)
- Ultrasonic Tomography (UST)

BEAST – Concrete Modulus after 28 Days

Modulus of elasticity from USW (28 days)

Modulus of elasticity as per ASTM C469 (28 days)

BEAST – Deck Concrete Cover Thickness

Use of Bid-Well automated screeding machine resulted in 1.25 inch concrete cover in the mid-span region (instead of 2 in.)

GPR Obtained Concrete Cover*

Modulus Evaluation by Ultrasonic Surface Waves

Condition (Deterioration) Curves from HCP, IE and GPR

Bridge Deck Segmentation

Deterioration Curves for Corrosion, Delamination, and Concrete Quality Degradation for Deck Segments

Live and Environmental Loading Vs. Delamination from IE Results 20-30 ft Deck Section

Live and Environmental Loading Vs. Concrete Quality from USW Results 20-30 ft Deck Section

BEAST – Comparison of Bare and Overlaid Deck Performance

> Bare Deck after 2.05M Live Load Passes

LMC Overlay

Overlaid Deck after 2.6M Live Load Passes

UHPC Overlay

Comparison of Concrete Cover Thickness of Bare and Overlaid Decks

Bare deck Middle section 1.25 in – to 1.5 in

Overlaid deck (LMC side) Middle section 1.3 in – to 1.6 in

Comparison of Bare (2.05M LLP) and Overlaid Deck (3.0M LLP) Performance

Comparison of Bare (2.05M LLP) and Overlaid Deck (3.0M LLP) Performance

GPR based condition map

Corrosive environment from ER

Comparison of Performance of Bare and Overlaid Decks Concrete Modulus from USW

Comparison of Performance of Bare and Overlaid Decks Delamination Condition Index from Impact Echo

Bare Deck after 2.05M Live Load Passes

Overlaid Deck after 3.0M Live Load Passes

Conclusions

- UHPC and LMC overlaid decks have shown significantly better performance than bare decks. Even with 60% more live loading cycles, there was lower concrete quality degradation, and far less signs of corrosion and delamination.
- Accelerated structural testing opens opportunities for much faster development of fundamental understanding of deterioration mechanisms and deterioration progression in bridges, in particular in concrete bridge decks.
- Evaluation is done at rates thirty or more times faster than on the majority (90 percent) of real bridges.
- Obtained data enable development of more realistic deterioration and predictive models, critical for effective bridge management.
- BEAST opens opportunities for rapid performance evaluation of:
 - New materials
 - New designs
 - Condition monitoring and assessment systems
 - Maintenance and rehabilitation procedures, etc.

Thank you!

cknowledgments

Federal Highway Administration – Long-Term Bridge Performance Program

- New Jersey Department of Transportation
- Seong-Hoon Kee (Dong-A University), Sherif Farrag and John Braley (Rutgers University)