Towards Use of Stabilized Sediments as a Sustainable Alternative to Traditional Infrastructure Materials: A Laboratory and Numerical Study

By: Tyler J. Oathes, Ph.D. Assistant Professor, Rutgers University

Outline

- Background and Motivation
- Material Sampling
- Experimental Results
- Numerical modeling
- ➤ Conclusions

New Jersey Marine Transportation System

- Contains over 300 nautical miles of engineered waterways
- United States Army Corps of Engineers operates and maintains the NJ Intracoastal Waterway
 - Over 117 miles of navigational channels
- NJDOT Office of Maritime Resources operates and maintains over 200 nautical miles of state navigation channels

Navigational channel maintenance

- > Regular maintenance dredging is required to maintain channel navigability
 - 250,000 CY of sediments dredged annually from 2014 to 2018
- > Sediment sources include:
 - Migration of flood tidal deltas (primarily sandy sediments)
 - Deposition of fine-grained sediments at transition areas between higher and lower currents
 - Mobilized sediments (sands/silts)
- Sandy sediments can be readily incorporated in earthwork or beach restoration projects
- Fine-grained sediments are generally considered unworkable as a raw material due to their:
 - High moisture contents
 - Low strengths
 - Poor workability

Storage of fine-grained sediments

- Off-shore placement of sediments is highly regulated especially if fine-grained or impacted
- Sediments often placed in confined disposal facilities
 - Essentially landfills designed for storage of fine-grained sediments (impacted or nonimpacted)
 - Current capacity is estimated to be approximately 2.9 million CY at current berm heights as of 2022
 - Capacity could be increased to ~5.5 million CY with berm raises
- CDFs provide a potential abundant source of earthen material for use in infrastructure projects as an alternative to raw materials

Experimental methods

≻ Goal:

 To evaluate the engineering performance of stabilized sediments under more field-realistic loading conditions

> Methods:

- Monotonic, constant volume, direct simple shear loading
 - Vertical confining pressures of 25, 100, and 400 kPa
- Sediments stabilized with 4% Portland cement by wet weight
- Samples cured in closed coolers (constant humidity conditions) for 3, 7, and 14 days

Figures via VJ Tech

Sampled sediments

Physical index	ASTM	NB	NC	WC	BC
	Standard				
Water content (%)	D2216	139	245	272	116
Specific gravity	D854	2.57	2.27	2.62	2.4
Liquid Limit (LL) (%)	D4318	87	114	128	70
Plastic Limit (PL) (%)	D4318	40	60	48	38
Plastic Index (PI) (%)	D4318	47	54	80	31
Clay fraction (%)	D7928	43.4	38.9	10.8	49.0
Silt fraction (%)	D6913/7928	44.2	47.6	84.6	45.7
Sand fraction (%)	D6913	12.4	13.5	4.6	5.4
Organic content (%)	D2974	7.6	25.3	12.6	12.4
USCS	D2478	OH	OH	OH	OH
tPAH (mg/kg-ds)		20.2	308	13.9	377

Peak strengths

> Mobilized peak shear stress increases with vertical confining pressure

- Consistent with expectations of a stress-dependent material
- > Peak shear stress ratios decrease with an increasing confining pressure
 - Cementation plays a larger role in shear stress at lower confining pressures where the frictional resistance is lower

Stress-strain responses

- Limited to no post-peak strength loss observed
- Peak shear stress mobilized between approximately 3 and 5% shear strain
- Strain-hardening observed with confining pressures of 25 kPa

Impact of long-term curing

> Long-term curing typically increases the mobilized peak shear stress

- > Strain-hardening tends to begin at lower strain levels with additional curing time
- > Initial stiffness appears to be relatively independent of the curing length

Numerical modeling

Goal: Evaluate the ability of different numerical approaches to capture the results of the laboratory testing program (peak strengths and stress-strain response)

≻ Methods:

- Single element simulations with the finite difference program FLAC 8.1 (Itasca 2019)
- Two different constitutive models
 - Mohr-Coulomb one of the most commonly used "simple" models in practice
 - PM4Silt (Boulanger and Ziotopoulou 2022) more complicated model developed for plastic soils under cyclic loading

Mohr Coulomb strengths and properties

- > Two sets of Mohr Coulomb properties were used: (1) interpreted and (2) optimized
- > Interpreted soil properties consistently overpredict the measured peak stress ratio
- > Optimized soil properties generally reduced the friction angle and cohesion
 - Better captured the peak shear stress ratio

Peak shear stress ratios

Mohr Coulomb – stress strain response

Interpreted

Optimized

PM4Silt

- PM4Silt is better able to capture the stiffness degradation across all confining pressures
- PM4Silt is unable to capture the stress path of the low confining pressure tests
 - Unable to directly account for the cementation
 - Assumes the material is dense and dilative to mobilize the high strength ratios
 - Constitutive models developed for cemented soils likely could address this gap

> Constant volume direct simple shear tests were performed on four New York Harbor sediments

> Tests showed that generally the stabilized sediments behaved similarly to other plastic soils

- Mobilized shear strengths increased with confining pressure (mobilized strength ratios decrease as confining pressure increases)
- Limited to no post-peak strength loss was observed
- At low confining pressures the sediments underwent strain-hardening

> Numerical approaches were shown to reasonably capture the experimental test results

- Mohr-Coulomb could capture the mobilized peak strengths but was unable to capture the stiffness degradation and stress path
- PM4Silt was able to better capture the stiffness degradation and stress path but was unable to capture the stress-path at low confining pressures

Overall, the results indicate that sediments have the potential to be used in more structural beneficial uses and could be a readily available alternative to environmentally intensive raw soils

Acknowledgements

This work was supported by the USDOT Region 2 UTC Consortium and the Center for Advanced Infrastructure and Transportation at Rutgers

> Collaborators:

- Robert Miskewitz, Ph.D. Professor, Rutgers CAIT
- Mahdi Talebi Graduate Student Researcher, Rutgers University
- Kaleb Arnold Graduate Student Researcher, Rutgers CAIT
- Eva Pharande Rutgers Project Super Undergraduate Researcher, Rutgers University

Impact of cement content

